Mercurial > repos > public > sbplib_julia
comparison test/LazyTensors/lazy_tensor_operations_test.jl @ 1023:52f07c77299d refactor/sbpoperators/inflation
Merge refactor/lazy_tensors
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 21 Mar 2022 09:51:07 +0100 |
parents | bbbc31953367 56fe037641ef |
children | 5be17f647018 |
comparison
equal
deleted
inserted
replaced
1022:bbbc31953367 | 1023:52f07c77299d |
---|---|
2 using Sbplib.LazyTensors | 2 using Sbplib.LazyTensors |
3 using Sbplib.RegionIndices | 3 using Sbplib.RegionIndices |
4 | 4 |
5 using Tullio | 5 using Tullio |
6 | 6 |
7 struct DummyMapping{T,R,D} <: LazyTensor{T,R,D} end | |
8 | |
9 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply | |
10 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose | |
11 | |
12 LazyTensors.range_size(m::DummyMapping) = :range_size | |
13 LazyTensors.domain_size(m::DummyMapping) = :domain_size | |
14 | |
15 | |
16 struct SizeDoublingMapping{T,R,D} <: LazyTensor{T,R,D} | |
17 domain_size::NTuple{D,Int} | |
18 end | |
19 | |
20 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) | |
21 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size | |
22 LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size | |
23 | |
24 | |
25 | |
7 @testset "Mapping transpose" begin | 26 @testset "Mapping transpose" begin |
8 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
9 | |
10 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply | |
11 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose | |
12 | |
13 LazyTensors.range_size(m::DummyMapping) = :range_size | |
14 LazyTensors.domain_size(m::DummyMapping) = :domain_size | |
15 | |
16 m = DummyMapping{Float64,2,3}() | 27 m = DummyMapping{Float64,2,3}() |
17 @test m' isa TensorMapping{Float64, 3,2} | 28 @test m' isa LazyTensor{Float64, 3,2} |
18 @test m'' == m | 29 @test m'' == m |
19 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose | 30 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose |
20 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply | 31 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply |
21 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply | 32 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply |
22 | 33 |
23 @test range_size(m') == :domain_size | 34 @test range_size(m') == :domain_size |
24 @test domain_size(m') == :range_size | 35 @test domain_size(m') == :range_size |
25 end | 36 end |
26 | 37 |
27 @testset "TensorApplication" begin | 38 |
28 struct SizeDoublingMapping{T,R,D} <: TensorMapping{T,R,D} | 39 @testset "LazyTensorApplication" begin |
29 domain_size::NTuple{D,Int} | |
30 end | |
31 | |
32 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) | |
33 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size | |
34 LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size | |
35 | |
36 | |
37 m = SizeDoublingMapping{Int, 1, 1}((3,)) | 40 m = SizeDoublingMapping{Int, 1, 1}((3,)) |
41 mm = SizeDoublingMapping{Int, 1, 1}((6,)) | |
38 v = [0,1,2] | 42 v = [0,1,2] |
39 @test size(m*v) == 2 .*size(v) | 43 @test size(m*v) == 2 .*size(v) |
40 @test (m*v)[0] == (:apply,v,(0,)) | 44 @test (m*v)[1] == (:apply,v,(1,)) |
41 @test (m*m*v)[1] == (:apply,m*v,(1,)) | 45 @test (mm*m*v)[1] == (:apply,m*v,(1,)) |
42 @test (m*m*v)[3] == (:apply,m*v,(3,)) | 46 @test (mm*m*v)[3] == (:apply,m*v,(3,)) |
43 @test (m*m*v)[6] == (:apply,m*v,(6,)) | 47 @test (mm*m*v)[6] == (:apply,m*v,(6,)) |
44 @test_broken BoundsError == (m*m*v)[0] | |
45 @test_broken BoundsError == (m*m*v)[7] | |
46 @test_throws MethodError m*m | 48 @test_throws MethodError m*m |
47 | 49 |
48 @test (m*v)[CartesianIndex(2)] == (:apply,v,(2,)) | 50 @test (m*v)[CartesianIndex(2)] == (:apply,v,(2,)) |
49 @test (m*m*v)[CartesianIndex(2)] == (:apply,m*v,(2,)) | 51 @test (mm*m*v)[CartesianIndex(2)] == (:apply,m*v,(2,)) |
50 | |
51 m = SizeDoublingMapping{Int, 2, 1}((3,)) | |
52 @test_throws MethodError m*ones(Int,2,2) | |
53 @test_throws MethodError m*m*v | |
54 | 52 |
55 m = SizeDoublingMapping{Float64, 2, 2}((3,3)) | 53 m = SizeDoublingMapping{Float64, 2, 2}((3,3)) |
54 mm = SizeDoublingMapping{Float64, 2, 2}((6,6)) | |
56 v = ones(3,3) | 55 v = ones(3,3) |
57 @test size(m*v) == 2 .*size(v) | 56 @test size(m*v) == 2 .*size(v) |
58 @test (m*v)[1,2] == (:apply,v,(1,2)) | 57 @test (m*v)[1,2] == (:apply,v,(1,2)) |
59 | 58 |
60 @test (m*v)[CartesianIndex(2,3)] == (:apply,v,(2,3)) | 59 @test (m*v)[CartesianIndex(2,3)] == (:apply,v,(2,3)) |
61 @test (m*m*v)[CartesianIndex(4,3)] == (:apply,m*v,(4,3)) | 60 @test (mm*m*v)[CartesianIndex(4,3)] == (:apply,m*v,(4,3)) |
62 | 61 |
63 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | 62 m = ScalingTensor(2,(3,)) |
64 λ::T | |
65 size::NTuple{D,Int} | |
66 end | |
67 | |
68 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
69 LazyTensors.range_size(m::ScalingOperator) = m.size | |
70 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
71 | |
72 m = ScalingOperator{Int,1}(2,(3,)) | |
73 v = [1,2,3] | 63 v = [1,2,3] |
74 @test m*v isa AbstractVector | 64 @test m*v isa AbstractVector |
75 @test m*v == [2,4,6] | 65 @test m*v == [2,4,6] |
76 | 66 |
77 m = ScalingOperator{Int,2}(2,(2,2)) | 67 m = ScalingTensor(2,(2,2)) |
78 v = [[1 2];[3 4]] | 68 v = [[1 2];[3 4]] |
79 @test m*v == [[2 4];[6 8]] | 69 @test m*v == [[2 4];[6 8]] |
80 @test (m*v)[2,1] == 6 | 70 @test (m*v)[2,1] == 6 |
81 | 71 |
72 @testset "Error on index out of bounds" begin | |
73 m = SizeDoublingMapping{Int, 1, 1}((3,)) | |
74 v = [0,1,2] | |
75 | |
76 @test_throws BoundsError (m*v)[0] | |
77 @test_throws BoundsError (m*v)[7] | |
78 end | |
79 | |
80 @testset "Error on unmatched dimensions" begin | |
81 v = [0,1,2] | |
82 m = SizeDoublingMapping{Int, 2, 1}((3,)) | |
83 @test_throws MethodError m*ones(Int,2,2) | |
84 @test_throws MethodError m*m*v | |
85 end | |
86 | |
87 @testset "Error on unmatched sizes" begin | |
88 @test_throws DomainSizeMismatch ScalingTensor(2,(2,))*ones(3) | |
89 @test_throws DomainSizeMismatch ScalingTensor(2,(2,))*ScalingTensor(2,(3,))*ones(3) | |
90 end | |
91 | |
92 | |
82 @testset "Type calculation" begin | 93 @testset "Type calculation" begin |
83 m = ScalingOperator{Int,1}(2,(3,)) | 94 m = ScalingTensor(2,(3,)) |
84 v = [1.,2.,3.] | 95 v = [1.,2.,3.] |
85 @test m*v isa AbstractVector{Float64} | 96 @test m*v isa AbstractVector{Float64} |
86 @test m*v == [2.,4.,6.] | 97 @test m*v == [2.,4.,6.] |
87 @inferred m*v | 98 @inferred m*v |
88 @inferred (m*v)[1] | 99 @inferred (m*v)[1] |
89 | 100 |
90 m = ScalingOperator{Int,2}(2,(2,2)) | 101 m = ScalingTensor(2,(2,2)) |
91 v = [[1. 2.];[3. 4.]] | 102 v = [[1. 2.];[3. 4.]] |
92 @test m*v == [[2. 4.];[6. 8.]] | 103 @test m*v == [[2. 4.];[6. 8.]] |
93 @test (m*v)[2,1] == 6. | 104 @test (m*v)[2,1] == 6. |
94 @inferred m*v | 105 @inferred m*v |
95 @inferred (m*v)[1] | 106 @inferred (m*v)[1] |
96 | 107 |
97 m = ScalingOperator{ComplexF64,1}(2. +2. *im,(3,)) | 108 m = ScalingTensor(2. +2. *im,(3,)) |
98 v = [1.,2.,3.] | 109 v = [1.,2.,3.] |
99 @test m*v isa AbstractVector{ComplexF64} | 110 @test m*v isa AbstractVector{ComplexF64} |
100 @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] | 111 @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] |
101 @inferred m*v | 112 @inferred m*v |
102 @inferred (m*v)[1] | 113 @inferred (m*v)[1] |
103 | 114 |
104 m = ScalingOperator{ComplexF64,1}(1,(3,)) | 115 m = ScalingTensor(1,(3,)) |
105 v = [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] | 116 v = [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] |
106 @test m*v isa AbstractVector{ComplexF64} | 117 @test m*v isa AbstractVector{ComplexF64} |
107 @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] | 118 @test m*v == [2. + 2. *im, 4. + 4. *im, 6. + 6. *im] |
108 @inferred m*v | 119 @inferred m*v |
109 @inferred (m*v)[1] | 120 @inferred (m*v)[1] |
110 | 121 |
111 m = ScalingOperator{Float64,1}(2., (3,)) | 122 m = ScalingTensor(2., (3,)) |
112 v = [[1,2,3], [3,2,1],[1,3,1]] | 123 v = [[1,2,3], [3,2,1],[1,3,1]] |
113 @test m*v isa AbstractVector{Vector{Float64}} | 124 @test m*v isa AbstractVector{Vector{Float64}} |
114 @test m*v == [[2.,4.,6.], [6.,4.,2.],[2.,6.,2.]] | 125 @test m*v == [[2.,4.,6.], [6.,4.,2.],[2.,6.,2.]] |
115 @inferred m*v | 126 @inferred m*v |
116 @inferred (m*v)[1] | 127 @inferred (m*v)[1] |
117 end | 128 end |
118 end | 129 end |
119 | 130 |
120 @testset "TensorMapping binary operations" begin | 131 |
121 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} | 132 @testset "LazyTensor binary operations" begin |
122 λ::T | 133 A = ScalingTensor(2.0, (3,)) |
123 range_size::NTuple{R,Int} | 134 B = ScalingTensor(3.0, (3,)) |
124 domain_size::NTuple{D,Int} | |
125 end | |
126 | |
127 LazyTensors.apply(m::ScalarMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = m.λ*v[I...] | |
128 LazyTensors.range_size(m::ScalarMapping) = m.domain_size | |
129 LazyTensors.domain_size(m::ScalarMapping) = m.range_size | |
130 | |
131 A = ScalarMapping{Float64,1,1}(2.0, (3,), (3,)) | |
132 B = ScalarMapping{Float64,1,1}(3.0, (3,), (3,)) | |
133 | 135 |
134 v = [1.1,1.2,1.3] | 136 v = [1.1,1.2,1.3] |
135 for i ∈ eachindex(v) | 137 for i ∈ eachindex(v) |
136 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] | 138 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] |
137 end | 139 end |
138 | 140 |
139 for i ∈ eachindex(v) | 141 for i ∈ eachindex(v) |
140 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] | 142 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] |
141 end | 143 end |
142 | 144 |
145 | |
143 @test range_size(A+B) == range_size(A) == range_size(B) | 146 @test range_size(A+B) == range_size(A) == range_size(B) |
144 @test domain_size(A+B) == domain_size(A) == domain_size(B) | 147 @test domain_size(A+B) == domain_size(A) == domain_size(B) |
145 | 148 |
146 @test ((A+B)*ComplexF64[1.1,1.2,1.3])[3] isa ComplexF64 | 149 @test ((A+B)*ComplexF64[1.1,1.2,1.3])[3] isa ComplexF64 |
147 end | 150 |
148 | 151 @testset "Error on unmatched sizes" begin |
149 | 152 @test_throws Union{DomainSizeMismatch, RangeSizeMismatch} ScalingTensor(2.0, (3,)) + ScalingTensor(2.0, (4,)) |
150 @testset "TensorMappingComposition" begin | 153 |
154 @test_throws DomainSizeMismatch ScalingTensor(2.0, (4,)) + SizeDoublingMapping{Float64,1,1}((2,)) | |
155 @test_throws DomainSizeMismatch SizeDoublingMapping{Float64,1,1}((2,)) + ScalingTensor(2.0, (4,)) | |
156 @test_throws RangeSizeMismatch ScalingTensor(2.0, (2,)) + SizeDoublingMapping{Float64,1,1}((2,)) | |
157 @test_throws RangeSizeMismatch SizeDoublingMapping{Float64,1,1}((2,)) + ScalingTensor(2.0, (2,)) | |
158 end | |
159 end | |
160 | |
161 | |
162 @testset "LazyTensorComposition" begin | |
151 A = rand(2,3) | 163 A = rand(2,3) |
152 B = rand(3,4) | 164 B = rand(3,4) |
153 | 165 |
154 Ã = LazyLinearMap(A, (1,), (2,)) | 166 Ã = LazyLinearMap(A, (1,), (2,)) |
155 B̃ = LazyLinearMap(B, (1,), (2,)) | 167 B̃ = LazyLinearMap(B, (1,), (2,)) |
156 | 168 |
157 @test Ã∘B̃ isa TensorMappingComposition | 169 @test Ã∘B̃ isa LazyTensorComposition |
158 @test range_size(Ã∘B̃) == (2,) | 170 @test range_size(Ã∘B̃) == (2,) |
159 @test domain_size(Ã∘B̃) == (4,) | 171 @test domain_size(Ã∘B̃) == (4,) |
160 @test_throws SizeMismatch B̃∘Ã | 172 @test_throws DomainSizeMismatch B̃∘Ã |
161 | 173 |
162 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) | 174 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) |
163 | 175 |
164 v = rand(4) | 176 v = rand(4) |
165 @test Ã∘B̃*v ≈ A*B*v rtol=1e-14 | 177 @test Ã∘B̃*v ≈ A*B*v rtol=1e-14 |
169 | 181 |
170 @test (Ã∘B̃*ComplexF64[1.,2.,3.,4.])[1] isa ComplexF64 | 182 @test (Ã∘B̃*ComplexF64[1.,2.,3.,4.])[1] isa ComplexF64 |
171 @test ((Ã∘B̃)'*ComplexF64[1.,2.])[1] isa ComplexF64 | 183 @test ((Ã∘B̃)'*ComplexF64[1.,2.])[1] isa ComplexF64 |
172 end | 184 end |
173 | 185 |
174 @testset "LazyLinearMap" begin | 186 |
175 # Test a standard matrix-vector product | 187 @testset "InflatedLazyTensor" begin |
176 # mapping vectors of size 4 to vectors of size 3. | 188 I(sz...) = IdentityTensor(sz...) |
177 A = rand(3,4) | |
178 Ã = LazyLinearMap(A, (1,), (2,)) | |
179 v = rand(4) | |
180 w = rand(3) | |
181 | |
182 @test à isa LazyLinearMap{T,1,1} where T | |
183 @test à isa TensorMapping{T,1,1} where T | |
184 @test range_size(Ã) == (3,) | |
185 @test domain_size(Ã) == (4,) | |
186 | |
187 @test Ã*ones(4) ≈ A*ones(4) atol=5e-13 | |
188 @test Ã*v ≈ A*v atol=5e-13 | |
189 @test Ã'*w ≈ A'*w | |
190 | |
191 A = rand(2,3,4) | |
192 @test_throws DomainError LazyLinearMap(A, (3,1), (2,)) | |
193 | |
194 # Test more exotic mappings | |
195 B = rand(3,4,2) | |
196 # Map vectors of size 2 to matrices of size (3,4) | |
197 B̃ = LazyLinearMap(B, (1,2), (3,)) | |
198 v = rand(2) | |
199 | |
200 @test range_size(B̃) == (3,4) | |
201 @test domain_size(B̃) == (2,) | |
202 @test B̃ isa TensorMapping{T,2,1} where T | |
203 @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13 | |
204 @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13 | |
205 | |
206 # Map matrices of size (3,2) to vectors of size 4 | |
207 B̃ = LazyLinearMap(B, (2,), (1,3)) | |
208 v = rand(3,2) | |
209 | |
210 @test range_size(B̃) == (4,) | |
211 @test domain_size(B̃) == (3,2) | |
212 @test B̃ isa TensorMapping{T,1,2} where T | |
213 @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] + | |
214 B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13 | |
215 @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] + | |
216 B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13 | |
217 | |
218 | |
219 # TODO: | |
220 # @inferred (B̃*v)[2] | |
221 end | |
222 | |
223 | |
224 @testset "IdentityMapping" begin | |
225 @test IdentityMapping{Float64}((4,5)) isa IdentityMapping{T,2} where T | |
226 @test IdentityMapping{Float64}((4,5)) isa TensorMapping{T,2,2} where T | |
227 @test IdentityMapping{Float64}((4,5)) == IdentityMapping{Float64}(4,5) | |
228 | |
229 @test IdentityMapping(3,2) isa IdentityMapping{Float64,2} | |
230 | |
231 for sz ∈ [(4,5),(3,),(5,6,4)] | |
232 I = IdentityMapping{Float64}(sz) | |
233 v = rand(sz...) | |
234 @test I*v == v | |
235 @test I'*v == v | |
236 | |
237 v = rand(ComplexF64,sz...) | |
238 @test I*v == v | |
239 @test I'*v == v | |
240 | |
241 @test range_size(I) == sz | |
242 @test domain_size(I) == sz | |
243 end | |
244 | |
245 I = IdentityMapping{Float64}((4,5)) | |
246 v = rand(4,5) | |
247 @inferred (I*v)[3,2] | |
248 @inferred (I'*v)[3,2] | |
249 @inferred range_size(I) | |
250 | |
251 @inferred range_dim(I) | |
252 @inferred domain_dim(I) | |
253 | |
254 Ã = rand(4,2) | |
255 A = LazyLinearMap(Ã,(1,),(2,)) | |
256 I1 = IdentityMapping{Float64}(2) | |
257 I2 = IdentityMapping{Float64}(4) | |
258 @test A∘I1 == A | |
259 @test I2∘A == A | |
260 @test I1∘I1 == I1 | |
261 @test_throws SizeMismatch I1∘A | |
262 @test_throws SizeMismatch A∘I2 | |
263 @test_throws SizeMismatch I1∘I2 | |
264 end | |
265 | |
266 @testset "InflatedTensorMapping" begin | |
267 I(sz...) = IdentityMapping(sz...) | |
268 | 189 |
269 Ã = rand(4,2) | 190 Ã = rand(4,2) |
270 B̃ = rand(4,2,3) | 191 B̃ = rand(4,2,3) |
271 C̃ = rand(4,2,3) | 192 C̃ = rand(4,2,3) |
272 | 193 |
273 A = LazyLinearMap(Ã,(1,),(2,)) | 194 A = LazyLinearMap(Ã,(1,),(2,)) |
274 B = LazyLinearMap(B̃,(1,2),(3,)) | 195 B = LazyLinearMap(B̃,(1,2),(3,)) |
275 C = LazyLinearMap(C̃,(1,),(2,3)) | 196 C = LazyLinearMap(C̃,(1,),(2,3)) |
276 | 197 |
277 @testset "Constructors" begin | 198 @testset "Constructors" begin |
278 @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} | 199 @test InflatedLazyTensor(I(3,2), A, I(4)) isa LazyTensor{Float64, 4, 4} |
279 @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} | 200 @test InflatedLazyTensor(I(3,2), B, I(4)) isa LazyTensor{Float64, 5, 4} |
280 @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} | 201 @test InflatedLazyTensor(I(3), C, I(2,3)) isa LazyTensor{Float64, 4, 5} |
281 @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} | 202 @test InflatedLazyTensor(C, I(2,3)) isa LazyTensor{Float64, 3, 4} |
282 @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} | 203 @test InflatedLazyTensor(I(3), C) isa LazyTensor{Float64, 2, 3} |
283 @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} | 204 @test InflatedLazyTensor(I(3), I(2,3)) isa LazyTensor{Float64, 3, 3} |
284 end | 205 end |
285 | 206 |
286 @testset "Range and domain size" begin | 207 @testset "Range and domain size" begin |
287 @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | 208 @test range_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,4,4) |
288 @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | 209 @test domain_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,2,4) |
289 | 210 |
290 @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) | 211 @test range_size(InflatedLazyTensor(I(3,2), B, I(4))) == (3,2,4,2,4) |
291 @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) | 212 @test domain_size(InflatedLazyTensor(I(3,2), B, I(4))) == (3,2,3,4) |
292 | 213 |
293 @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) | 214 @test range_size(InflatedLazyTensor(I(3), C, I(2,3))) == (3,4,2,3) |
294 @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) | 215 @test domain_size(InflatedLazyTensor(I(3), C, I(2,3))) == (3,2,3,2,3) |
295 | 216 |
296 @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | 217 @inferred range_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,4,4) |
297 @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | 218 @inferred domain_size(InflatedLazyTensor(I(3,2), A, I(4))) == (3,2,2,4) |
298 end | 219 end |
299 | 220 |
300 @testset "Application" begin | 221 @testset "Application" begin |
301 # Testing regular application and transposed application with inflation "before", "after" and "before and after". | 222 # Testing regular application and transposed application with inflation "before", "after" and "before and after". |
302 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. | 223 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. |
303 tests = [ | 224 cases = [ |
304 ( | 225 ( |
305 InflatedTensorMapping(I(3,2), A, I(4)), | 226 InflatedLazyTensor(I(3,2), A, I(4)), |
306 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply | 227 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply |
307 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose | 228 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose |
308 ), | 229 ), |
309 ( | 230 ( |
310 InflatedTensorMapping(I(3,2), B, I(4)), | 231 InflatedLazyTensor(I(3,2), B, I(4)), |
311 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), | 232 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), |
312 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), | 233 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), |
313 ), | 234 ), |
314 ( | 235 ( |
315 InflatedTensorMapping(I(3,2), C, I(4)), | 236 InflatedLazyTensor(I(3,2), C, I(4)), |
316 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), | 237 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), |
317 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), | 238 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), |
318 ), | 239 ), |
319 ( | 240 ( |
320 InflatedTensorMapping(I(3,2), A), | 241 InflatedLazyTensor(I(3,2), A), |
321 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), | 242 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), |
322 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), | 243 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), |
323 ), | 244 ), |
324 ( | 245 ( |
325 InflatedTensorMapping(I(3,2), B), | 246 InflatedLazyTensor(I(3,2), B), |
326 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), | 247 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), |
327 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), | 248 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), |
328 ), | 249 ), |
329 ( | 250 ( |
330 InflatedTensorMapping(I(3,2), C), | 251 InflatedLazyTensor(I(3,2), C), |
331 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), | 252 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), |
332 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), | 253 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), |
333 ), | 254 ), |
334 ( | 255 ( |
335 InflatedTensorMapping(A,I(4)), | 256 InflatedLazyTensor(A,I(4)), |
336 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), | 257 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), |
337 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), | 258 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), |
338 ), | 259 ), |
339 ( | 260 ( |
340 InflatedTensorMapping(B,I(4)), | 261 InflatedLazyTensor(B,I(4)), |
341 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), | 262 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), |
342 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), | 263 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), |
343 ), | 264 ), |
344 ( | 265 ( |
345 InflatedTensorMapping(C,I(4)), | 266 InflatedLazyTensor(C,I(4)), |
346 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), | 267 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), |
347 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), | 268 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), |
348 ), | 269 ), |
349 ] | 270 ] |
350 | 271 |
351 @testset "apply" begin | 272 @testset "$tm" for (tm, true_apply, true_apply_transpose) ∈ cases |
352 for i ∈ 1:length(tests) | 273 v = rand(domain_size(tm)...) |
353 tm = tests[i][1] | 274 @test tm*v ≈ true_apply(v) rtol=1e-14 |
354 v = rand(domain_size(tm)...) | 275 |
355 true_value = tests[i][2](v) | 276 v = rand(range_size(tm)...) |
356 @test tm*v ≈ true_value rtol=1e-14 | 277 @test tm'*v ≈ true_apply_transpose(v) rtol=1e-14 |
357 end | |
358 end | 278 end |
359 | 279 |
360 @testset "apply_transpose" begin | |
361 for i ∈ 1:length(tests) | |
362 tm = tests[i][1] | |
363 v = rand(range_size(tm)...) | |
364 true_value = tests[i][3](v) | |
365 @test tm'*v ≈ true_value rtol=1e-14 | |
366 end | |
367 end | |
368 | |
369 @testset "application to other type" begin | 280 @testset "application to other type" begin |
370 tm = InflatedTensorMapping(I(3,2), A, I(4)) | 281 tm = InflatedLazyTensor(I(3,2), A, I(4)) |
371 | 282 |
372 v = rand(ComplexF64, domain_size(tm)...) | 283 v = rand(ComplexF64, domain_size(tm)...) |
373 @test (tm*v)[1,2,3,1] isa ComplexF64 | 284 @test (tm*v)[1,2,3,1] isa ComplexF64 |
374 | 285 |
375 v = rand(ComplexF64, domain_size(tm')...) | 286 v = rand(ComplexF64, domain_size(tm')...) |
376 @test (tm'*v)[1,2,2,1] isa ComplexF64 | 287 @test (tm'*v)[1,2,2,1] isa ComplexF64 |
377 end | 288 end |
378 | 289 |
379 @testset "Inference of application" begin | 290 @testset "Inference of application" begin |
380 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | 291 tm = InflatedLazyTensor(I(2,3),ScalingTensor(2.0, (3,2)),I(3,4)) |
381 λ::T | |
382 size::NTuple{D,Int} | |
383 end | |
384 | |
385 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
386 LazyTensors.range_size(m::ScalingOperator) = m.size | |
387 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
388 | |
389 tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) | |
390 v = rand(domain_size(tm)...) | 292 v = rand(domain_size(tm)...) |
391 | 293 |
392 @inferred apply(tm,v,1,2,3,2,2,4) | 294 @inferred apply(tm,v,1,2,3,2,2,4) |
393 @inferred (tm*v)[1,2,3,2,2,4] | 295 @inferred (tm*v)[1,2,3,2,2,4] |
394 end | 296 end |
395 end | 297 end |
396 | 298 |
397 @testset "InflatedTensorMapping of InflatedTensorMapping" begin | 299 @testset "InflatedLazyTensor of InflatedLazyTensor" begin |
398 A = ScalingOperator(2.0,(2,3)) | 300 A = ScalingTensor(2.0,(2,3)) |
399 itm = InflatedTensorMapping(I(3,2), A, I(4)) | 301 itm = InflatedLazyTensor(I(3,2), A, I(4)) |
400 @test InflatedTensorMapping(I(4), itm, I(2)) == InflatedTensorMapping(I(4,3,2), A, I(4,2)) | 302 @test InflatedLazyTensor(I(4), itm, I(2)) == InflatedLazyTensor(I(4,3,2), A, I(4,2)) |
401 @test InflatedTensorMapping(itm, I(2)) == InflatedTensorMapping(I(3,2), A, I(4,2)) | 303 @test InflatedLazyTensor(itm, I(2)) == InflatedLazyTensor(I(3,2), A, I(4,2)) |
402 @test InflatedTensorMapping(I(4), itm) == InflatedTensorMapping(I(4,3,2), A, I(4)) | 304 @test InflatedLazyTensor(I(4), itm) == InflatedLazyTensor(I(4,3,2), A, I(4)) |
403 | 305 |
404 @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. | 306 @test InflatedLazyTensor(I(2), I(2), I(2)) isa InflatedLazyTensor # The constructor should always return its type. |
405 end | 307 end |
406 end | 308 end |
407 | |
408 @testset "split_index" begin | |
409 @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) | |
410 @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) | |
411 @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) | |
412 @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) | |
413 @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) | |
414 @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) | |
415 | |
416 @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) | |
417 @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) | |
418 | |
419 @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) | |
420 end | |
421 | |
422 @testset "slice_tuple" begin | |
423 @test LazyTensors.slice_tuple((1,2,3),Val(1), Val(3)) == (1,2,3) | |
424 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(2), Val(5)) == (2,3,4,5) | |
425 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(1), Val(3)) == (1,2,3) | |
426 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) | |
427 end | |
428 | |
429 @testset "split_tuple" begin | |
430 @testset "2 parts" begin | |
431 @test LazyTensors.split_tuple((),Val(0)) == ((),()) | |
432 @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) | |
433 @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) | |
434 | |
435 @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) | |
436 @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) | |
437 @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) | |
438 @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) | |
439 @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) | |
440 | |
441 @test LazyTensors.split_tuple((1,2,true,4),Val(3)) == ((1,2,true),(4,)) | |
442 | |
443 @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) | |
444 @inferred LazyTensors.split_tuple((1,2,true,4),Val(3)) | |
445 end | |
446 | |
447 @testset "3 parts" begin | |
448 @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) | |
449 @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) | |
450 @test LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) == ((1,),(true,),(3,)) | |
451 | |
452 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) | |
453 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) | |
454 | |
455 @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) | |
456 @inferred LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) | |
457 end | |
458 end | |
459 | |
460 @testset "flatten_tuple" begin | |
461 @test LazyTensors.flatten_tuple((1,)) == (1,) | |
462 @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6) | |
463 @test LazyTensors.flatten_tuple((1,2,(3,4),5,6)) == (1,2,3,4,5,6) | |
464 @test LazyTensors.flatten_tuple((1,2,(3,(4,5)),6)) == (1,2,3,4,5,6) | |
465 @test LazyTensors.flatten_tuple(((1,2),(3,4),(5,),6)) == (1,2,3,4,5,6) | |
466 end | |
467 | |
468 | 309 |
469 @testset "LazyOuterProduct" begin | 310 @testset "LazyOuterProduct" begin |
470 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | 311 A = ScalingTensor(2.0, (5,)) |
471 λ::T | 312 B = ScalingTensor(3.0, (3,)) |
472 size::NTuple{D,Int} | 313 C = ScalingTensor(5.0, (3,2)) |
473 end | |
474 | |
475 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
476 LazyTensors.range_size(m::ScalingOperator) = m.size | |
477 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
478 | |
479 A = ScalingOperator(2.0, (5,)) | |
480 B = ScalingOperator(3.0, (3,)) | |
481 C = ScalingOperator(5.0, (3,2)) | |
482 | 314 |
483 AB = LazyOuterProduct(A,B) | 315 AB = LazyOuterProduct(A,B) |
484 @test AB isa TensorMapping{T,2,2} where T | 316 @test AB isa LazyTensor{T,2,2} where T |
485 @test range_size(AB) == (5,3) | 317 @test range_size(AB) == (5,3) |
486 @test domain_size(AB) == (5,3) | 318 @test domain_size(AB) == (5,3) |
487 | 319 |
488 v = rand(range_size(AB)...) | 320 v = rand(range_size(AB)...) |
489 @test AB*v == 6*v | 321 @test AB*v == 6*v |
490 | 322 |
491 ABC = LazyOuterProduct(A,B,C) | 323 ABC = LazyOuterProduct(A,B,C) |
492 | 324 |
493 @test ABC isa TensorMapping{T,4,4} where T | 325 @test ABC isa LazyTensor{T,4,4} where T |
494 @test range_size(ABC) == (5,3,3,2) | 326 @test range_size(ABC) == (5,3,3,2) |
495 @test domain_size(ABC) == (5,3,3,2) | 327 @test domain_size(ABC) == (5,3,3,2) |
496 | 328 |
497 @test A⊗B == AB | 329 @test A⊗B == AB |
498 @test A⊗B⊗C == ABC | 330 @test A⊗B⊗C == ABC |
513 B̃Ã = LazyOuterProduct(B̃,Ã) | 345 B̃Ã = LazyOuterProduct(B̃,Ã) |
514 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] | 346 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] |
515 @test B̃Ã*v₂ ≈ BAv | 347 @test B̃Ã*v₂ ≈ BAv |
516 | 348 |
517 @testset "Indentity mapping arguments" begin | 349 @testset "Indentity mapping arguments" begin |
518 @test LazyOuterProduct(IdentityMapping(3,2), IdentityMapping(1,2)) == IdentityMapping(3,2,1,2) | 350 @test LazyOuterProduct(IdentityTensor(3,2), IdentityTensor(1,2)) == IdentityTensor(3,2,1,2) |
519 | 351 |
520 Ã = LazyLinearMap(A,(1,),(2,)) | 352 Ã = LazyLinearMap(A,(1,),(2,)) |
521 @test LazyOuterProduct(IdentityMapping(3,2), Ã) == InflatedTensorMapping(IdentityMapping(3,2),Ã) | 353 @test LazyOuterProduct(IdentityTensor(3,2), Ã) == InflatedLazyTensor(IdentityTensor(3,2),Ã) |
522 @test LazyOuterProduct(Ã, IdentityMapping(3,2)) == InflatedTensorMapping(Ã,IdentityMapping(3,2)) | 354 @test LazyOuterProduct(Ã, IdentityTensor(3,2)) == InflatedLazyTensor(Ã,IdentityTensor(3,2)) |
523 | 355 |
524 I1 = IdentityMapping(3,2) | 356 I1 = IdentityTensor(3,2) |
525 I2 = IdentityMapping(4) | 357 I2 = IdentityTensor(4) |
526 @test I1⊗Ã⊗I2 == InflatedTensorMapping(I1, Ã, I2) | 358 @test I1⊗Ã⊗I2 == InflatedLazyTensor(I1, Ã, I2) |
527 end | 359 end |
528 | |
529 end | 360 end |
530 | 361 |
531 @testset "inflate" begin | 362 @testset "inflate" begin |
532 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | 363 I = LazyTensors.inflate(IdentityTensor(),(3,4,5,6), 2) |
533 λ::T | 364 @test I isa LazyTensor{Float64, 3,3} |
534 size::NTuple{D,Int} | |
535 end | |
536 | |
537 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
538 LazyTensors.range_size(m::ScalingOperator) = m.size | |
539 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
540 | |
541 | |
542 I = LazyTensors.inflate(IdentityMapping(),(3,4,5,6), 2) | |
543 @test I isa TensorMapping{Float64, 3,3} | |
544 @test range_size(I) == (3,5,6) | 365 @test range_size(I) == (3,5,6) |
545 @test domain_size(I) == (3,5,6) | 366 @test domain_size(I) == (3,5,6) |
546 | 367 |
547 # TODO: More tests | 368 # TODO: More tests |
548 | 369 |