Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/volumeops/laplace/laplace_test.jl @ 728:45966c77cb20 feature/selectable_tests
Split tests for SbpOperators over several files
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Mar 2021 20:34:40 +0100 |
parents | |
children | 6114274447f5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Wed Mar 17 20:34:40 2021 +0100 @@ -0,0 +1,64 @@ +using Test + +using Sbplib.SbpOperators +using Sbplib.Grids + +@testset "Laplace" begin + g_1D = EquidistantGrid(101, 0.0, 1.) + g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) + @testset "Constructors" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + L = laplace(g_1D, op.innerStencil, op.closureStencils) + @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) + @test L isa TensorMapping{T,1,1} where T + end + @testset "3D" begin + L = laplace(g_3D, op.innerStencil, op.closureStencils) + @test L isa TensorMapping{T,3,3} where T + Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) + Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) + Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) + @test L == Dxx + Dyy + Dzz + end + end + + # Exact differentiation is measured point-wise. In other cases + # the error is measured in the l2-norm. + @testset "Accuracy" begin + l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); + polynomials = () + maxOrder = 4; + for i = 0:maxOrder-1 + f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) + polynomials = (polynomials...,evalOn(g_3D,f_i)) + end + v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) + Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) + + # 2nd order interior stencil, 1st order boundary stencil, + # implies that L*v should be exact for binomials up to order 2. + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + L = laplace(g_3D,op.innerStencil,op.closureStencils) + @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 + @test L*v ≈ Δv rtol = 5e-2 norm = l2 + end + + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for binomials up to order 3. + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + L = laplace(g_3D,op.innerStencil,op.closureStencils) + # NOTE: high tolerances for checking the "exact" differentiation + # due to accumulation of round-off errors/cancellation errors? + @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 + @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 + @test L*v ≈ Δv rtol = 5e-4 norm = l2 + end + end +end