diff test/SbpOperators/volumeops/laplace/laplace_test.jl @ 728:45966c77cb20 feature/selectable_tests

Split tests for SbpOperators over several files
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 17 Mar 2021 20:34:40 +0100
parents
children 6114274447f5
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl	Wed Mar 17 20:34:40 2021 +0100
@@ -0,0 +1,64 @@
+using Test
+
+using Sbplib.SbpOperators
+using Sbplib.Grids
+
+@testset "Laplace" begin
+    g_1D = EquidistantGrid(101, 0.0, 1.)
+    g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
+    @testset "Constructors" begin
+        op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        @testset "1D" begin
+            L = laplace(g_1D, op.innerStencil, op.closureStencils)
+            @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils)
+            @test L isa TensorMapping{T,1,1}  where T
+        end
+        @testset "3D" begin
+            L = laplace(g_3D, op.innerStencil, op.closureStencils)
+            @test L isa TensorMapping{T,3,3} where T
+            Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1)
+            Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2)
+            Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3)
+            @test L == Dxx + Dyy + Dzz
+        end
+    end
+
+    # Exact differentiation is measured point-wise. In other cases
+    # the error is measured in the l2-norm.
+    @testset "Accuracy" begin
+        l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2));
+        polynomials = ()
+        maxOrder = 4;
+        for i = 0:maxOrder-1
+            f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i)
+            polynomials = (polynomials...,evalOn(g_3D,f_i))
+        end
+        v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z))
+        Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z))
+
+        # 2nd order interior stencil, 1st order boundary stencil,
+        # implies that L*v should be exact for binomials up to order 2.
+        @testset "2nd order" begin
+            op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+            L = laplace(g_3D,op.innerStencil,op.closureStencils)
+            @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
+            @test L*v ≈ Δv rtol = 5e-2 norm = l2
+        end
+
+        # 4th order interior stencil, 2nd order boundary stencil,
+        # implies that L*v should be exact for binomials up to order 3.
+        @testset "4th order" begin
+            op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+            L = laplace(g_3D,op.innerStencil,op.closureStencils)
+            # NOTE: high tolerances for checking the "exact" differentiation
+            # due to accumulation of round-off errors/cancellation errors?
+            @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
+            @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9
+            @test L*v ≈ Δv rtol = 5e-4 norm = l2
+        end
+    end
+end