Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 728:45966c77cb20 feature/selectable_tests
Split tests for SbpOperators over several files
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Mar 2021 20:34:40 +0100 |
parents | |
children | 6114274447f5 |
comparison
equal
deleted
inserted
replaced
727:95b207729b7a | 728:45966c77cb20 |
---|---|
1 using Test | |
2 | |
3 using Sbplib.SbpOperators | |
4 using Sbplib.Grids | |
5 | |
6 @testset "Laplace" begin | |
7 g_1D = EquidistantGrid(101, 0.0, 1.) | |
8 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) | |
9 @testset "Constructors" begin | |
10 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
11 @testset "1D" begin | |
12 L = laplace(g_1D, op.innerStencil, op.closureStencils) | |
13 @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) | |
14 @test L isa TensorMapping{T,1,1} where T | |
15 end | |
16 @testset "3D" begin | |
17 L = laplace(g_3D, op.innerStencil, op.closureStencils) | |
18 @test L isa TensorMapping{T,3,3} where T | |
19 Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) | |
20 Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) | |
21 Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) | |
22 @test L == Dxx + Dyy + Dzz | |
23 end | |
24 end | |
25 | |
26 # Exact differentiation is measured point-wise. In other cases | |
27 # the error is measured in the l2-norm. | |
28 @testset "Accuracy" begin | |
29 l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); | |
30 polynomials = () | |
31 maxOrder = 4; | |
32 for i = 0:maxOrder-1 | |
33 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) | |
34 polynomials = (polynomials...,evalOn(g_3D,f_i)) | |
35 end | |
36 v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) | |
37 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) | |
38 | |
39 # 2nd order interior stencil, 1st order boundary stencil, | |
40 # implies that L*v should be exact for binomials up to order 2. | |
41 @testset "2nd order" begin | |
42 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
43 L = laplace(g_3D,op.innerStencil,op.closureStencils) | |
44 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
45 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
46 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | |
47 @test L*v ≈ Δv rtol = 5e-2 norm = l2 | |
48 end | |
49 | |
50 # 4th order interior stencil, 2nd order boundary stencil, | |
51 # implies that L*v should be exact for binomials up to order 3. | |
52 @testset "4th order" begin | |
53 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
54 L = laplace(g_3D,op.innerStencil,op.closureStencils) | |
55 # NOTE: high tolerances for checking the "exact" differentiation | |
56 # due to accumulation of round-off errors/cancellation errors? | |
57 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
58 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
59 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | |
60 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 | |
61 @test L*v ≈ Δv rtol = 5e-4 norm = l2 | |
62 end | |
63 end | |
64 end |