Mercurial > repos > public > sbplib_julia
diff SbpOperators/src/quadrature/inversequadrature.jl @ 329:408c37b295c2
Refactor 1D tensor mapping in inverse quadrature to separate file, InverseDiagonalNorm. Add tests
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 25 Sep 2020 09:34:37 +0200 |
parents | SbpOperators/src/InverseQuadrature.jl@9cc5d1498b2d |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/quadrature/inversequadrature.jl Fri Sep 25 09:34:37 2020 +0200 @@ -0,0 +1,34 @@ +export InverseQuadrature +""" + InverseQuadrature{Dim,T<:Real,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator +The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalInnerProduct +tensor operators. +""" +struct InverseQuadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim} + Hi::NTuple{Dim,InverseDiagonalInnerProduct{T,M}} +end + +LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} + error("not implemented") +end + +@inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::Index) where T + @inbounds q = apply(Qi.Hi[1], v , I) + return q +end + +@inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T + # InverseQuadrature in x direction + @inbounds vx = view(v, :, Int(J)) + @inbounds qx_inv = apply(Qi.Hi[1], vx , I) + # InverseQuadrature in y-direction + @inbounds vy = view(v, Int(I), :) + @inbounds qy_inv = apply(Qi.Hi[2], vy, J) + return qx_inv*qy_inv +end + +LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Qi,v,I...)