Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/quadrature/inversequadrature.jl @ 329:408c37b295c2
Refactor 1D tensor mapping in inverse quadrature to separate file, InverseDiagonalNorm. Add tests
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 25 Sep 2020 09:34:37 +0200 |
parents | SbpOperators/src/InverseQuadrature.jl@9cc5d1498b2d |
children |
comparison
equal
deleted
inserted
replaced
328:9cc5d1498b2d | 329:408c37b295c2 |
---|---|
1 export InverseQuadrature | |
2 """ | |
3 InverseQuadrature{Dim,T<:Real,M,K} <: TensorMapping{T,Dim,Dim} | |
4 | |
5 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator | |
6 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalInnerProduct | |
7 tensor operators. | |
8 """ | |
9 struct InverseQuadrature{Dim,T<:Real,M} <: TensorOperator{T,Dim} | |
10 Hi::NTuple{Dim,InverseDiagonalInnerProduct{T,M}} | |
11 end | |
12 | |
13 LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size | |
14 | |
15 function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} | |
16 error("not implemented") | |
17 end | |
18 | |
19 @inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::Index) where T | |
20 @inbounds q = apply(Qi.Hi[1], v , I) | |
21 return q | |
22 end | |
23 | |
24 @inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T | |
25 # InverseQuadrature in x direction | |
26 @inbounds vx = view(v, :, Int(J)) | |
27 @inbounds qx_inv = apply(Qi.Hi[1], vx , I) | |
28 # InverseQuadrature in y-direction | |
29 @inbounds vy = view(v, Int(I), :) | |
30 @inbounds qy_inv = apply(Qi.Hi[2], vy, J) | |
31 return qx_inv*qy_inv | |
32 end | |
33 | |
34 LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Qi,v,I...) |