diff src/SbpOperators/quadrature/diagonal_quadrature.jl @ 557:3c18a15934a7 feature/quadrature_as_outer_product

Merge in default
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sun, 29 Nov 2020 21:52:44 +0100
parents src/SbpOperators/quadrature/diagonal_inner_product.jl@1a53eb83ed24 src/SbpOperators/quadrature/diagonal_inner_product.jl@09ae5b519b4c
children 9b5710ae6587
line wrap: on
line diff
--- a/src/SbpOperators/quadrature/diagonal_quadrature.jl	Sun Nov 29 21:16:55 2020 +0100
+++ b/src/SbpOperators/quadrature/diagonal_quadrature.jl	Sun Nov 29 21:52:44 2020 +0100
@@ -44,39 +44,38 @@
 LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
 
 """
-    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
+    apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
 Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions
-`Lower`,`Interior`,`Upper`,`Unknown`.
+`Lower`,`Interior`,`Upper`.
 """
-function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T
-    return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
 end
 
-function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, I::Index{Upper}) where T
+function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T
     N = length(v);
-    return @inbounds H.h*H.closure[N-Int(I)+1]*v[Int(I)]
+    return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)]
 end
 
-function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T
-    return @inbounds H.h*v[Int(I)]
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds H.h*v[Int(i)]
 end
 
-function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, I::Index{Unknown}) where T
+function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
     N = length(v);
-    r = getregion(Int(I), closure_size(H), N)
-    i = Index(Int(I), r)
-    return LazyTensors.apply(H, v, i)
+    r = getregion(i, closure_size(H), N)
+
+    return LazyTensors.apply(H, v, Index(i, r))
 end
 
 """
     apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
 Implements the application (H'*v)[I]. The operator is self-adjoint.
 """
-LazyTensors.apply_transpose(H::DiagonalQuadrature, v::AbstractVector, I) = LazyTensors.apply(H,v,I)
+LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i)
 
 """
     closure_size(H)
 Returns the size of the closure stencil of a DiagonalQuadrature `H`.
 """
 closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M
-export closure_size