Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/quadrature/diagonal_quadrature.jl @ 557:3c18a15934a7 feature/quadrature_as_outer_product
Merge in default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 29 Nov 2020 21:52:44 +0100 |
parents | src/SbpOperators/quadrature/diagonal_inner_product.jl@1a53eb83ed24 src/SbpOperators/quadrature/diagonal_inner_product.jl@09ae5b519b4c |
children | 9b5710ae6587 |
line wrap: on
line diff
--- a/src/SbpOperators/quadrature/diagonal_quadrature.jl Sun Nov 29 21:16:55 2020 +0100 +++ b/src/SbpOperators/quadrature/diagonal_quadrature.jl Sun Nov 29 21:52:44 2020 +0100 @@ -44,39 +44,38 @@ LazyTensors.domain_size(H::DiagonalQuadrature) = H.size """ - apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T + apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions -`Lower`,`Interior`,`Upper`,`Unknown`. +`Lower`,`Interior`,`Upper`. """ -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] end -function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, I::Index{Upper}) where T +function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); - return @inbounds H.h*H.closure[N-Int(I)+1]*v[Int(I)] + return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)] end -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds H.h*v[Int(I)] +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds H.h*v[Int(i)] end -function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Unknown}) where T +function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T N = length(v); - r = getregion(Int(I), closure_size(H), N) - i = Index(Int(I), r) - return LazyTensors.apply(H, v, i) + r = getregion(i, closure_size(H), N) + + return LazyTensors.apply(H, v, Index(i, r)) end """ apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T Implements the application (H'*v)[I]. The operator is self-adjoint. """ -LazyTensors.apply_transpose(H::DiagonalQuadrature, v::AbstractVector, I) = LazyTensors.apply(H,v,I) +LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i) """ closure_size(H) Returns the size of the closure stencil of a DiagonalQuadrature `H`. """ closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M -export closure_size