Mercurial > repos > public > sbplib_julia
view src/SbpOperators/quadrature/diagonal_quadrature.jl @ 558:9b5710ae6587 feature/quadrature_as_outer_product
Update documentation
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 29 Nov 2020 22:06:53 +0100 |
parents | 3c18a15934a7 |
children | 04d7b4eb63ef |
line wrap: on
line source
""" diagonal_quadrature(g,quadrature_closure) Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while the multi-dimensional operator is the outer-product of the one-dimensional operators in each coordinate direction. """ function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim H = DiagonalQuadrature(restrict(g,1), quadrature_closure) for i ∈ 2:Dim H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure) end return H end export diagonal_quadrature """ DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} Implements the one-dimensional diagonal quadrature operator as a `TensorMapping` The quadrature is defined by the quadrature interval length `h`, the quadrature closure weights `closure` and the number of quadrature intervals `size`. The interior stencil has the weight 1. """ struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} h::T closure::NTuple{M,T} size::Tuple{Int} end export DiagonalQuadrature """ DiagonalQuadrature(g, quadrature_closure) Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with closure given by `quadrature_closure`. """ function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) end """ range_size(H::DiagonalQuadrature) The size of an object in the range of `H` """ LazyTensors.range_size(H::DiagonalQuadrature) = H.size """ domain_size(H::DiagonalQuadrature) The size of an object in the domain of `H` """ LazyTensors.domain_size(H::DiagonalQuadrature) = H.size """ apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions `Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first be converted to an `Index{R}`. """ function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] end function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); #TODO: Use dim_size here? return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)] end function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T return @inbounds H.h*v[Int(i)] end function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T N = length(v); #TODO: Use dim_size here? r = getregion(i, closure_size(H), N) return LazyTensors.apply(H, v, Index(i, r)) end """ apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T Implements the application (H'*v)[I]. The operator is self-adjoint. """ LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i) """ closure_size(H) Returns the size of the closure stencil of a DiagonalQuadrature `H`. """ closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M