Mercurial > repos > public > sbplib_julia
diff DiffOps/src/DiffOps.jl @ 211:1ad91e11b1f4 package_refactor
Move DiffOps and Grids into packages
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2019 10:44:20 +0200 |
parents | diffOp.jl@bcd2029c590d |
children | 3a93d8a799ce |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DiffOps/src/DiffOps.jl Wed Jun 26 10:44:20 2019 +0200 @@ -0,0 +1,220 @@ +abstract type DiffOp end + +# TBD: The "error("not implemented")" thing seems to be hiding good error information. How to fix that? Different way of saying that these should be implemented? +function apply(D::DiffOp, v::AbstractVector, i::Int) + error("not implemented") +end + +function innerProduct(D::DiffOp, u::AbstractVector, v::AbstractVector)::Real + error("not implemented") +end + +function matrixRepresentation(D::DiffOp) + error("not implemented") +end + +abstract type DiffOpCartesian{Dim} <: DiffOp end + +# DiffOp must have a grid of dimension Dim!!! +function apply!(D::DiffOpCartesian{Dim}, u::AbstractArray{T,Dim}, v::AbstractArray{T,Dim}) where {T,Dim} + for I ∈ eachindex(D.grid) + u[I] = apply(D, v, I) + end + + return nothing +end + +function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T + apply_region!(D, u, v, Lower, Lower) + apply_region!(D, u, v, Lower, Interior) + apply_region!(D, u, v, Lower, Upper) + apply_region!(D, u, v, Interior, Lower) + apply_region!(D, u, v, Interior, Interior) + apply_region!(D, u, v, Interior, Upper) + apply_region!(D, u, v, Upper, Lower) + apply_region!(D, u, v, Upper, Interior) + apply_region!(D, u, v, Upper, Upper) + return nothing +end + +# Maybe this should be split according to b3fbef345810 after all?! Seems like it makes performance more predictable +function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T + for I ∈ regionindices(D.grid.size, closureSize(D.op), (r1,r2)) + @inbounds indextuple = (Index{r1}(I[1]), Index{r2}(I[2])) + @inbounds u[I] = apply(D, v, indextuple) + end + return nothing +end + +function apply_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T + apply_region_tiled!(D, u, v, Lower, Lower) + apply_region_tiled!(D, u, v, Lower, Interior) + apply_region_tiled!(D, u, v, Lower, Upper) + apply_region_tiled!(D, u, v, Interior, Lower) + apply_region_tiled!(D, u, v, Interior, Interior) + apply_region_tiled!(D, u, v, Interior, Upper) + apply_region_tiled!(D, u, v, Upper, Lower) + apply_region_tiled!(D, u, v, Upper, Interior) + apply_region_tiled!(D, u, v, Upper, Upper) + return nothing +end + +using TiledIteration +function apply_region_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T + ri = regionindices(D.grid.size, closureSize(D.op), (r1,r2)) + # TODO: Pass Tilesize to function + for tileaxs ∈ TileIterator(axes(ri), padded_tilesize(T, (5,5), 2)) + for j ∈ tileaxs[2], i ∈ tileaxs[1] + I = ri[i,j] + u[I] = apply(D, v, (Index{r1}(I[1]), Index{r2}(I[2]))) + end + end + return nothing +end + +function apply(D::DiffOp, v::AbstractVector)::AbstractVector + u = zeros(eltype(v), size(v)) + apply!(D,v,u) + return u +end + +struct NormalDerivative{N,M,K} + op::D2{Float64,N,M,K} + grid::EquidistantGrid + bId::CartesianBoundary +end + +function apply_transpose(d::NormalDerivative, v::AbstractArray, I::Integer) + u = selectdim(v,3-dim(d.bId),I) + return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) +end + +# Not correct abstraction level +# TODO: Not type stable D:< +function apply(d::NormalDerivative, v::AbstractArray, I::Tuple{Integer,Integer}) + i = I[dim(d.bId)] + j = I[3-dim(d.bId)] + N_i = d.grid.size[dim(d.bId)] + + r = getregion(i, closureSize(d.op), N_i) + + if r != region(d.bId) + return 0 + end + + if r == Lower + # Note, closures are indexed by offset. Fix this D:< + return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j] + elseif r == Upper + return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-j]*v[j] + end +end + +struct BoundaryValue{N,M,K} + op::D2{Float64,N,M,K} + grid::EquidistantGrid + bId::CartesianBoundary +end + +function apply(e::BoundaryValue, v::AbstractArray, I::Tuple{Integer,Integer}) + i = I[dim(e.bId)] + j = I[3-dim(e.bId)] + N_i = e.grid.size[dim(e.bId)] + + r = getregion(i, closureSize(e.op), N_i) + + if r != region(e.bId) + return 0 + end + + if r == Lower + # Note, closures are indexed by offset. Fix this D:< + return e.op.eClosure[i-1]*v[j] + elseif r == Upper + return e.op.eClosure[N_i-j]*v[j] + end +end + +function apply_transpose(e::BoundaryValue, v::AbstractArray, I::Integer) + u = selectdim(v,3-dim(e.bId),I) + return apply_e(e.op, u, region(e.bId)) +end + +struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} + grid::EquidistantGrid{Dim,T} + a::T + op::D2{Float64,N,M,K} + e::BoundaryValue + d::NormalDerivative +end + +function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim + error("not implemented") +end + +# u = L*v +function apply(L::Laplace{1}, v::AbstractVector, i::Int) + uᵢ = L.a * apply(L.op, L.grid.spacing[1], v, i) + return uᵢ +end + +@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} + # 2nd x-derivative + @inbounds vx = view(v, :, Int(I[2])) + @inbounds uᵢ = L.a*apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) + # 2nd y-derivative + @inbounds vy = view(v, Int(I[1]), :) + @inbounds uᵢ += L.a*apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) + return uᵢ +end + +# Slow but maybe convenient? +function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) + I = Index{Unknown}.(Tuple(i)) + apply(L, v, I) +end + +struct BoundaryOperator + +end + + +""" +A BoundaryCondition should implement the method + sat(::DiffOp, v::AbstractArray, data::AbstractArray, ...) +""" +abstract type BoundaryCondition end + +struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end + +function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} + e = BoundaryValue(L.op, L.grid, Bid()) + d = NormalDerivative(L.op, L.grid, Bid()) + Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) + # TODO: Implement BoundaryQuadrature method + + return -L.Hi*e*Hᵧ*(d'*v - g) + # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on +end + +struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition + tau::Float64 +end + +function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} + e = BoundaryValue(L.op, L.grid, Bid()) + d = NormalDerivative(L.op, L.grid, Bid()) + Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) + # TODO: Implement BoundaryQuadrature method + + return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g) + # Need to handle scalar multiplication and addition of TensorMapping +end + +# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D +# return apply(s.L, v, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) +# end