Mercurial > repos > public > sbplib_julia
view DiffOps/src/DiffOps.jl @ 211:1ad91e11b1f4 package_refactor
Move DiffOps and Grids into packages
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2019 10:44:20 +0200 |
parents | diffOp.jl@bcd2029c590d |
children | 3a93d8a799ce |
line wrap: on
line source
abstract type DiffOp end # TBD: The "error("not implemented")" thing seems to be hiding good error information. How to fix that? Different way of saying that these should be implemented? function apply(D::DiffOp, v::AbstractVector, i::Int) error("not implemented") end function innerProduct(D::DiffOp, u::AbstractVector, v::AbstractVector)::Real error("not implemented") end function matrixRepresentation(D::DiffOp) error("not implemented") end abstract type DiffOpCartesian{Dim} <: DiffOp end # DiffOp must have a grid of dimension Dim!!! function apply!(D::DiffOpCartesian{Dim}, u::AbstractArray{T,Dim}, v::AbstractArray{T,Dim}) where {T,Dim} for I ∈ eachindex(D.grid) u[I] = apply(D, v, I) end return nothing end function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T apply_region!(D, u, v, Lower, Lower) apply_region!(D, u, v, Lower, Interior) apply_region!(D, u, v, Lower, Upper) apply_region!(D, u, v, Interior, Lower) apply_region!(D, u, v, Interior, Interior) apply_region!(D, u, v, Interior, Upper) apply_region!(D, u, v, Upper, Lower) apply_region!(D, u, v, Upper, Interior) apply_region!(D, u, v, Upper, Upper) return nothing end # Maybe this should be split according to b3fbef345810 after all?! Seems like it makes performance more predictable function apply_region!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T for I ∈ regionindices(D.grid.size, closureSize(D.op), (r1,r2)) @inbounds indextuple = (Index{r1}(I[1]), Index{r2}(I[2])) @inbounds u[I] = apply(D, v, indextuple) end return nothing end function apply_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}) where T apply_region_tiled!(D, u, v, Lower, Lower) apply_region_tiled!(D, u, v, Lower, Interior) apply_region_tiled!(D, u, v, Lower, Upper) apply_region_tiled!(D, u, v, Interior, Lower) apply_region_tiled!(D, u, v, Interior, Interior) apply_region_tiled!(D, u, v, Interior, Upper) apply_region_tiled!(D, u, v, Upper, Lower) apply_region_tiled!(D, u, v, Upper, Interior) apply_region_tiled!(D, u, v, Upper, Upper) return nothing end using TiledIteration function apply_region_tiled!(D::DiffOpCartesian{2}, u::AbstractArray{T,2}, v::AbstractArray{T,2}, r1::Type{<:Region}, r2::Type{<:Region}) where T ri = regionindices(D.grid.size, closureSize(D.op), (r1,r2)) # TODO: Pass Tilesize to function for tileaxs ∈ TileIterator(axes(ri), padded_tilesize(T, (5,5), 2)) for j ∈ tileaxs[2], i ∈ tileaxs[1] I = ri[i,j] u[I] = apply(D, v, (Index{r1}(I[1]), Index{r2}(I[2]))) end end return nothing end function apply(D::DiffOp, v::AbstractVector)::AbstractVector u = zeros(eltype(v), size(v)) apply!(D,v,u) return u end struct NormalDerivative{N,M,K} op::D2{Float64,N,M,K} grid::EquidistantGrid bId::CartesianBoundary end function apply_transpose(d::NormalDerivative, v::AbstractArray, I::Integer) u = selectdim(v,3-dim(d.bId),I) return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) end # Not correct abstraction level # TODO: Not type stable D:< function apply(d::NormalDerivative, v::AbstractArray, I::Tuple{Integer,Integer}) i = I[dim(d.bId)] j = I[3-dim(d.bId)] N_i = d.grid.size[dim(d.bId)] r = getregion(i, closureSize(d.op), N_i) if r != region(d.bId) return 0 end if r == Lower # Note, closures are indexed by offset. Fix this D:< return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j] elseif r == Upper return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-j]*v[j] end end struct BoundaryValue{N,M,K} op::D2{Float64,N,M,K} grid::EquidistantGrid bId::CartesianBoundary end function apply(e::BoundaryValue, v::AbstractArray, I::Tuple{Integer,Integer}) i = I[dim(e.bId)] j = I[3-dim(e.bId)] N_i = e.grid.size[dim(e.bId)] r = getregion(i, closureSize(e.op), N_i) if r != region(e.bId) return 0 end if r == Lower # Note, closures are indexed by offset. Fix this D:< return e.op.eClosure[i-1]*v[j] elseif r == Upper return e.op.eClosure[N_i-j]*v[j] end end function apply_transpose(e::BoundaryValue, v::AbstractArray, I::Integer) u = selectdim(v,3-dim(e.bId),I) return apply_e(e.op, u, region(e.bId)) end struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} grid::EquidistantGrid{Dim,T} a::T op::D2{Float64,N,M,K} e::BoundaryValue d::NormalDerivative end function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim error("not implemented") end # u = L*v function apply(L::Laplace{1}, v::AbstractVector, i::Int) uᵢ = L.a * apply(L.op, L.grid.spacing[1], v, i) return uᵢ end @inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} # 2nd x-derivative @inbounds vx = view(v, :, Int(I[2])) @inbounds uᵢ = L.a*apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) # 2nd y-derivative @inbounds vy = view(v, Int(I[1]), :) @inbounds uᵢ += L.a*apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) return uᵢ end # Slow but maybe convenient? function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) I = Index{Unknown}.(Tuple(i)) apply(L, v, I) end struct BoundaryOperator end """ A BoundaryCondition should implement the method sat(::DiffOp, v::AbstractArray, data::AbstractArray, ...) """ abstract type BoundaryCondition end struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} e = BoundaryValue(L.op, L.grid, Bid()) d = NormalDerivative(L.op, L.grid, Bid()) Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) # TODO: Implement BoundaryQuadrature method return -L.Hi*e*Hᵧ*(d'*v - g) # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on end struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition tau::Float64 end function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} e = BoundaryValue(L.op, L.grid, Bid()) d = NormalDerivative(L.op, L.grid, Bid()) Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) # TODO: Implement BoundaryQuadrature method return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g) # Need to handle scalar multiplication and addition of TensorMapping end # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D # return apply(s.L, v, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) # end