Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/volumeops/laplace/laplace_test.jl @ 866:1784b1c0af3e feature/laplace_opset
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Jan 2022 14:44:24 +0100 |
parents | dc38e57ebd1b 24df68453890 |
children | 6a4d36eccf39 |
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl Fri Jul 02 14:23:33 2021 +0200 +++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl Wed Jan 19 14:44:24 2022 +0100 @@ -6,75 +6,82 @@ using Sbplib.RegionIndices using Sbplib.StaticDicts +operator_path = sbp_operators_path()*"standard_diagonal.toml" +# Default stencils (4th order) +stencil_set = read_stencil_set(operator_path; order=4) +inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) +closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) +e_closure = parse_stencil(stencil_set["e"]["closure"]) +d_closure = parse_stencil(stencil_set["d1"]["closure"]) +quadrature_interior = parse_scalar(stencil_set["H"]["inner"]) +quadrature_closure = parse_tuple(stencil_set["H"]["closure"]) + @testset "Laplace" begin g_1D = EquidistantGrid(101, 0.0, 1.) g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "Constructors" begin @testset "1D" begin - # Create all tensor mappings included in Laplace - Δ = laplace(g_1D, op.innerStencil, op.closureStencils) - H = inner_product(g_1D, op.quadratureClosure) - Hi = inverse_inner_product(g_1D, op.quadratureClosure) + Δ = laplace(g_1D, inner_stencil, closure_stencils) + H = inner_product(g_1D, quadrature_interior, quadrature_closure) + Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) (id_l, id_r) = boundary_identifiers(g_1D) - e_l = boundary_restriction(g_1D,op.eClosure,id_l) - e_r = boundary_restriction(g_1D,op.eClosure,id_r) + e_l = boundary_restriction(g_1D, e_closure,id_l) + e_r = boundary_restriction(g_1D, e_closure,id_r) e_dict = StaticDict(id_l => e_l, id_r => e_r) - d_l = normal_derivative(g_1D,op.dClosure,id_l) - d_r = normal_derivative(g_1D,op.dClosure,id_r) + d_l = normal_derivative(g_1D, d_closure,id_l) + d_r = normal_derivative(g_1D, d_closure,id_r) d_dict = StaticDict(id_l => d_l, id_r => d_r) - H_l = inner_product(boundary_grid(g_1D,id_l),op.quadratureClosure) - H_r = inner_product(boundary_grid(g_1D,id_r),op.quadratureClosure) + H_l = inner_product(boundary_grid(g_1D,id_l), quadrature_interior, quadrature_closure) + H_r = inner_product(boundary_grid(g_1D,id_r), quadrature_interior, quadrature_closure) Hb_dict = StaticDict(id_l => H_l, id_r => H_r) - L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4) - @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) + L = Laplace(g_1D, operator_path; order=4) + @test L == Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict) @test L isa TensorMapping{T,1,1} where T - @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) + @inferred Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict) end @testset "3D" begin - # Create all tensor mappings included in Laplace - Δ = laplace(g_3D, op.innerStencil, op.closureStencils) - H = inner_product(g_3D, op.quadratureClosure) - Hi = inverse_inner_product(g_3D, op.quadratureClosure) + Δ = laplace(g_3D, inner_stencil, closure_stencils) + H = inner_product(g_3D, quadrature_interior, quadrature_closure) + Hi = inverse_inner_product(g_3D, quadrature_interior, quadrature_closure) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) - e_l = boundary_restriction(g_3D,op.eClosure,id_l) - e_r = boundary_restriction(g_3D,op.eClosure,id_r) - e_s = boundary_restriction(g_3D,op.eClosure,id_s) - e_n = boundary_restriction(g_3D,op.eClosure,id_n) - e_b = boundary_restriction(g_3D,op.eClosure,id_b) - e_t = boundary_restriction(g_3D,op.eClosure,id_t) + e_l = boundary_restriction(g_3D, e_closure,id_l) + e_r = boundary_restriction(g_3D, e_closure,id_r) + e_s = boundary_restriction(g_3D, e_closure,id_s) + e_n = boundary_restriction(g_3D, e_closure,id_n) + e_b = boundary_restriction(g_3D, e_closure,id_b) + e_t = boundary_restriction(g_3D, e_closure,id_t) e_dict = StaticDict(id_l => e_l, id_r => e_r, id_s => e_s, id_n => e_n, id_b => e_b, id_t => e_t) - d_l = normal_derivative(g_3D,op.dClosure,id_l) - d_r = normal_derivative(g_3D,op.dClosure,id_r) - d_s = normal_derivative(g_3D,op.dClosure,id_s) - d_n = normal_derivative(g_3D,op.dClosure,id_n) - d_b = normal_derivative(g_3D,op.dClosure,id_b) - d_t = normal_derivative(g_3D,op.dClosure,id_t) + d_l = normal_derivative(g_3D, d_closure,id_l) + d_r = normal_derivative(g_3D, d_closure,id_r) + d_s = normal_derivative(g_3D, d_closure,id_s) + d_n = normal_derivative(g_3D, d_closure,id_n) + d_b = normal_derivative(g_3D, d_closure,id_b) + d_t = normal_derivative(g_3D, d_closure,id_t) d_dict = StaticDict(id_l => d_l, id_r => d_r, id_s => d_s, id_n => d_n, id_b => d_b, id_t => d_t) - H_l = inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) - H_r = inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) - H_s = inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) - H_n = inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) - H_b = inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) - H_t = inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) + H_l = inner_product(boundary_grid(g_3D,id_l), quadrature_interior, quadrature_closure) + H_r = inner_product(boundary_grid(g_3D,id_r), quadrature_interior, quadrature_closure) + H_s = inner_product(boundary_grid(g_3D,id_s), quadrature_interior, quadrature_closure) + H_n = inner_product(boundary_grid(g_3D,id_n), quadrature_interior, quadrature_closure) + H_b = inner_product(boundary_grid(g_3D,id_b), quadrature_interior, quadrature_closure) + H_t = inner_product(boundary_grid(g_3D,id_t), quadrature_interior, quadrature_closure) Hb_dict = StaticDict(id_l => H_l, id_r => H_r, id_s => H_s, id_n => H_n, id_b => H_b, id_t => H_t) - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) + L = Laplace(g_3D, operator_path; order=4) @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) @test L isa TensorMapping{T,3,3} where T @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) @@ -83,92 +90,92 @@ @testset "laplace" begin @testset "1D" begin - L = laplace(g_1D, op.innerStencil, op.closureStencils) - @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) + L = laplace(g_1D, inner_stencil, closure_stencils) + @test L == second_derivative(g_1D, inner_stencil, closure_stencils) @test L isa TensorMapping{T,1,1} where T end @testset "3D" begin - L = laplace(g_3D, op.innerStencil, op.closureStencils) + L = laplace(g_3D, inner_stencil, closure_stencils) @test L isa TensorMapping{T,3,3} where T - Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) - Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) - Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) + Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) + Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) + Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) @test L == Dxx + Dyy + Dzz @test L isa TensorMapping{T,3,3} where T end end @testset "inner_product" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) - @test inner_product(L) == inner_product(g_3D,op.quadratureClosure) + L = Laplace(g_3D, operator_path; order=4) + @test inner_product(L) == inner_product(g_3D, quadrature_interior, quadrature_closure) end @testset "inverse_inner_product" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) - @test inverse_inner_product(L) == inverse_inner_product(g_3D,op.quadratureClosure) + L = Laplace(g_3D, operator_path; order=4) + @test inverse_inner_product(L) == inverse_inner_product(g_3D, quadrature_interior, quadrature_closure) end @testset "boundary_restriction" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) + L = Laplace(g_3D, operator_path; order=4) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) - @test boundary_restriction(L,id_l) == boundary_restriction(g_3D,op.eClosure,id_l) - @test boundary_restriction(L,id_r) == boundary_restriction(g_3D,op.eClosure,id_r) - @test boundary_restriction(L,id_s) == boundary_restriction(g_3D,op.eClosure,id_s) - @test boundary_restriction(L,id_n) == boundary_restriction(g_3D,op.eClosure,id_n) - @test boundary_restriction(L,id_b) == boundary_restriction(g_3D,op.eClosure,id_b) - @test boundary_restriction(L,id_t) == boundary_restriction(g_3D,op.eClosure,id_t) + @test boundary_restriction(L, id_l) == boundary_restriction(g_3D, e_closure,id_l) + @test boundary_restriction(L, id_r) == boundary_restriction(g_3D, e_closure,id_r) + @test boundary_restriction(L, id_s) == boundary_restriction(g_3D, e_closure,id_s) + @test boundary_restriction(L, id_n) == boundary_restriction(g_3D, e_closure,id_n) + @test boundary_restriction(L, id_b) == boundary_restriction(g_3D, e_closure,id_b) + @test boundary_restriction(L, id_t) == boundary_restriction(g_3D, e_closure,id_t) ids = boundary_identifiers(g_3D) - es = boundary_restriction(L,ids) - @test es == (boundary_restriction(L,id_l), - boundary_restriction(L,id_r), - boundary_restriction(L,id_s), - boundary_restriction(L,id_n), - boundary_restriction(L,id_b), - boundary_restriction(L,id_t)); - @test es == boundary_restriction(L,ids...) + es = boundary_restriction(L, ids) + @test es == (boundary_restriction(L, id_l), + boundary_restriction(L, id_r), + boundary_restriction(L, id_s), + boundary_restriction(L, id_n), + boundary_restriction(L, id_b), + boundary_restriction(L, id_t)); + @test es == boundary_restriction(L, ids...) end @testset "normal_derivative" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) + L = Laplace(g_3D, operator_path; order=4) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) - @test normal_derivative(L,id_l) == normal_derivative(g_3D,op.dClosure,id_l) - @test normal_derivative(L,id_r) == normal_derivative(g_3D,op.dClosure,id_r) - @test normal_derivative(L,id_s) == normal_derivative(g_3D,op.dClosure,id_s) - @test normal_derivative(L,id_n) == normal_derivative(g_3D,op.dClosure,id_n) - @test normal_derivative(L,id_b) == normal_derivative(g_3D,op.dClosure,id_b) - @test normal_derivative(L,id_t) == normal_derivative(g_3D,op.dClosure,id_t) + @test normal_derivative(L, id_l) == normal_derivative(g_3D, d_closure,id_l) + @test normal_derivative(L, id_r) == normal_derivative(g_3D, d_closure,id_r) + @test normal_derivative(L, id_s) == normal_derivative(g_3D, d_closure,id_s) + @test normal_derivative(L, id_n) == normal_derivative(g_3D, d_closure,id_n) + @test normal_derivative(L, id_b) == normal_derivative(g_3D, d_closure,id_b) + @test normal_derivative(L, id_t) == normal_derivative(g_3D, d_closure,id_t) ids = boundary_identifiers(g_3D) - ds = normal_derivative(L,ids) - @test ds == (normal_derivative(L,id_l), - normal_derivative(L,id_r), - normal_derivative(L,id_s), - normal_derivative(L,id_n), - normal_derivative(L,id_b), - normal_derivative(L,id_t)); - @test ds == normal_derivative(L,ids...) + ds = normal_derivative(L, ids) + @test ds == (normal_derivative(L, id_l), + normal_derivative(L, id_r), + normal_derivative(L, id_s), + normal_derivative(L, id_n), + normal_derivative(L, id_b), + normal_derivative(L, id_t)); + @test ds == normal_derivative(L, ids...) end @testset "boundary_quadrature" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) + L = Laplace(g_3D, operator_path; order=4) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) - @test boundary_quadrature(L,id_l) == inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) - @test boundary_quadrature(L,id_r) == inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) - @test boundary_quadrature(L,id_s) == inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) - @test boundary_quadrature(L,id_n) == inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) - @test boundary_quadrature(L,id_b) == inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) - @test boundary_quadrature(L,id_t) == inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) + @test boundary_quadrature(L, id_l) == inner_product(boundary_grid(g_3D, id_l), quadrature_interior, quadrature_closure) + @test boundary_quadrature(L, id_r) == inner_product(boundary_grid(g_3D, id_r), quadrature_interior, quadrature_closure) + @test boundary_quadrature(L, id_s) == inner_product(boundary_grid(g_3D, id_s), quadrature_interior, quadrature_closure) + @test boundary_quadrature(L, id_n) == inner_product(boundary_grid(g_3D, id_n), quadrature_interior, quadrature_closure) + @test boundary_quadrature(L, id_b) == inner_product(boundary_grid(g_3D, id_b), quadrature_interior, quadrature_closure) + @test boundary_quadrature(L, id_t) == inner_product(boundary_grid(g_3D, id_t), quadrature_interior, quadrature_closure) ids = boundary_identifiers(g_3D) - H_gammas = boundary_quadrature(L,ids) - @test H_gammas == (boundary_quadrature(L,id_l), - boundary_quadrature(L,id_r), - boundary_quadrature(L,id_s), - boundary_quadrature(L,id_n), - boundary_quadrature(L,id_b), - boundary_quadrature(L,id_t)); - @test H_gammas == boundary_quadrature(L,ids...) + H_gammas = boundary_quadrature(L, ids) + @test H_gammas == (boundary_quadrature(L, id_l), + boundary_quadrature(L, id_r), + boundary_quadrature(L, id_s), + boundary_quadrature(L, id_n), + boundary_quadrature(L, id_b), + boundary_quadrature(L, id_t)); + @test H_gammas == boundary_quadrature(L, ids...) end # Exact differentiation is measured point-wise. In other cases @@ -187,7 +194,10 @@ # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=2) + stencil_set = read_stencil_set(operator_path; order=2) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + L = laplace(g_3D, inner_stencil, closure_stencils) @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @@ -197,7 +207,10 @@ # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin - L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) + stencil_set = read_stencil_set(operator_path; order=4) + inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + L = laplace(g_3D, inner_stencil, closure_stencils) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9