Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 872:6a4d36eccf39 feature/laplace_opset
REVIEW: Add some comments about the tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 25 Jan 2022 10:36:13 +0100 |
parents | 1784b1c0af3e |
children | 12e8e431b43c |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors using Sbplib.RegionIndices using Sbplib.StaticDicts operator_path = sbp_operators_path()*"standard_diagonal.toml" # Default stencils (4th order) stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) e_closure = parse_stencil(stencil_set["e"]["closure"]) d_closure = parse_stencil(stencil_set["d1"]["closure"]) quadrature_interior = parse_scalar(stencil_set["H"]["inner"]) quadrature_closure = parse_tuple(stencil_set["H"]["closure"]) @testset "Laplace" begin g_1D = EquidistantGrid(101, 0.0, 1.) g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) @testset "Constructors" begin @testset "1D" begin Δ = laplace(g_1D, inner_stencil, closure_stencils) H = inner_product(g_1D, quadrature_interior, quadrature_closure) Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure) (id_l, id_r) = boundary_identifiers(g_1D) e_l = boundary_restriction(g_1D, e_closure,id_l) e_r = boundary_restriction(g_1D, e_closure,id_r) e_dict = StaticDict(id_l => e_l, id_r => e_r) d_l = normal_derivative(g_1D, d_closure,id_l) d_r = normal_derivative(g_1D, d_closure,id_r) d_dict = StaticDict(id_l => d_l, id_r => d_r) H_l = inner_product(boundary_grid(g_1D,id_l), quadrature_interior, quadrature_closure) H_r = inner_product(boundary_grid(g_1D,id_r), quadrature_interior, quadrature_closure) Hb_dict = StaticDict(id_l => H_l, id_r => H_r) L = Laplace(g_1D, operator_path; order=4) @test L == Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict) @test L isa TensorMapping{T,1,1} where T @inferred Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict) # REVIEW: The tests above seem very tied to the implementation. Is # it important that the components of the operator set are stored # in static dicts? Is something like below better? # # ``` # L = Laplace(g_1D, operator_path; order=4) # @test L isa TensorMapping{T,1,1} where T # @test boundary_restriction(L,id_l) == boundary_restriction(g_1D, e_closure,id_l) # ... # ``` # I guess this is more or less simply a reorganization of the test and skipping testing for the struct layout end @testset "3D" begin Δ = laplace(g_3D, inner_stencil, closure_stencils) H = inner_product(g_3D, quadrature_interior, quadrature_closure) Hi = inverse_inner_product(g_3D, quadrature_interior, quadrature_closure) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) e_l = boundary_restriction(g_3D, e_closure,id_l) e_r = boundary_restriction(g_3D, e_closure,id_r) e_s = boundary_restriction(g_3D, e_closure,id_s) e_n = boundary_restriction(g_3D, e_closure,id_n) e_b = boundary_restriction(g_3D, e_closure,id_b) e_t = boundary_restriction(g_3D, e_closure,id_t) e_dict = StaticDict(id_l => e_l, id_r => e_r, id_s => e_s, id_n => e_n, id_b => e_b, id_t => e_t) d_l = normal_derivative(g_3D, d_closure,id_l) d_r = normal_derivative(g_3D, d_closure,id_r) d_s = normal_derivative(g_3D, d_closure,id_s) d_n = normal_derivative(g_3D, d_closure,id_n) d_b = normal_derivative(g_3D, d_closure,id_b) d_t = normal_derivative(g_3D, d_closure,id_t) d_dict = StaticDict(id_l => d_l, id_r => d_r, id_s => d_s, id_n => d_n, id_b => d_b, id_t => d_t) H_l = inner_product(boundary_grid(g_3D,id_l), quadrature_interior, quadrature_closure) H_r = inner_product(boundary_grid(g_3D,id_r), quadrature_interior, quadrature_closure) H_s = inner_product(boundary_grid(g_3D,id_s), quadrature_interior, quadrature_closure) H_n = inner_product(boundary_grid(g_3D,id_n), quadrature_interior, quadrature_closure) H_b = inner_product(boundary_grid(g_3D,id_b), quadrature_interior, quadrature_closure) H_t = inner_product(boundary_grid(g_3D,id_t), quadrature_interior, quadrature_closure) Hb_dict = StaticDict(id_l => H_l, id_r => H_r, id_s => H_s, id_n => H_n, id_b => H_b, id_t => H_t) L = Laplace(g_3D, operator_path; order=4) @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) @test L isa TensorMapping{T,3,3} where T @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) end end # REVIEW: Is this testset misplaced? Should it really be inside the "Laplace" testset? @testset "laplace" begin @testset "1D" begin L = laplace(g_1D, inner_stencil, closure_stencils) @test L == second_derivative(g_1D, inner_stencil, closure_stencils) @test L isa TensorMapping{T,1,1} where T end @testset "3D" begin L = laplace(g_3D, inner_stencil, closure_stencils) @test L isa TensorMapping{T,3,3} where T Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1) Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2) Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3) @test L == Dxx + Dyy + Dzz @test L isa TensorMapping{T,3,3} where T end end @testset "inner_product" begin L = Laplace(g_3D, operator_path; order=4) @test inner_product(L) == inner_product(g_3D, quadrature_interior, quadrature_closure) end @testset "inverse_inner_product" begin L = Laplace(g_3D, operator_path; order=4) @test inverse_inner_product(L) == inverse_inner_product(g_3D, quadrature_interior, quadrature_closure) end @testset "boundary_restriction" begin L = Laplace(g_3D, operator_path; order=4) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) @test boundary_restriction(L, id_l) == boundary_restriction(g_3D, e_closure,id_l) @test boundary_restriction(L, id_r) == boundary_restriction(g_3D, e_closure,id_r) @test boundary_restriction(L, id_s) == boundary_restriction(g_3D, e_closure,id_s) @test boundary_restriction(L, id_n) == boundary_restriction(g_3D, e_closure,id_n) @test boundary_restriction(L, id_b) == boundary_restriction(g_3D, e_closure,id_b) @test boundary_restriction(L, id_t) == boundary_restriction(g_3D, e_closure,id_t) ids = boundary_identifiers(g_3D) es = boundary_restriction(L, ids) @test es == (boundary_restriction(L, id_l), boundary_restriction(L, id_r), boundary_restriction(L, id_s), boundary_restriction(L, id_n), boundary_restriction(L, id_b), boundary_restriction(L, id_t)); @test es == boundary_restriction(L, ids...) end @testset "normal_derivative" begin L = Laplace(g_3D, operator_path; order=4) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) @test normal_derivative(L, id_l) == normal_derivative(g_3D, d_closure,id_l) @test normal_derivative(L, id_r) == normal_derivative(g_3D, d_closure,id_r) @test normal_derivative(L, id_s) == normal_derivative(g_3D, d_closure,id_s) @test normal_derivative(L, id_n) == normal_derivative(g_3D, d_closure,id_n) @test normal_derivative(L, id_b) == normal_derivative(g_3D, d_closure,id_b) @test normal_derivative(L, id_t) == normal_derivative(g_3D, d_closure,id_t) ids = boundary_identifiers(g_3D) ds = normal_derivative(L, ids) @test ds == (normal_derivative(L, id_l), normal_derivative(L, id_r), normal_derivative(L, id_s), normal_derivative(L, id_n), normal_derivative(L, id_b), normal_derivative(L, id_t)); @test ds == normal_derivative(L, ids...) end @testset "boundary_quadrature" begin L = Laplace(g_3D, operator_path; order=4) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) @test boundary_quadrature(L, id_l) == inner_product(boundary_grid(g_3D, id_l), quadrature_interior, quadrature_closure) @test boundary_quadrature(L, id_r) == inner_product(boundary_grid(g_3D, id_r), quadrature_interior, quadrature_closure) @test boundary_quadrature(L, id_s) == inner_product(boundary_grid(g_3D, id_s), quadrature_interior, quadrature_closure) @test boundary_quadrature(L, id_n) == inner_product(boundary_grid(g_3D, id_n), quadrature_interior, quadrature_closure) @test boundary_quadrature(L, id_b) == inner_product(boundary_grid(g_3D, id_b), quadrature_interior, quadrature_closure) @test boundary_quadrature(L, id_t) == inner_product(boundary_grid(g_3D, id_t), quadrature_interior, quadrature_closure) ids = boundary_identifiers(g_3D) H_gammas = boundary_quadrature(L, ids) @test H_gammas == (boundary_quadrature(L, id_l), boundary_quadrature(L, id_r), boundary_quadrature(L, id_s), boundary_quadrature(L, id_n), boundary_quadrature(L, id_b), boundary_quadrature(L, id_t)); @test H_gammas == boundary_quadrature(L, ids...) end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,evalOn(g_3D,f_i)) end v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) L = laplace(g_3D, inner_stencil, closure_stencils) @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) L = laplace(g_3D, inner_stencil, closure_stencils) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test L*v ≈ Δv rtol = 5e-4 norm = l2 end end end