view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 872:6a4d36eccf39 feature/laplace_opset

REVIEW: Add some comments about the tests
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 25 Jan 2022 10:36:13 +0100
parents 1784b1c0af3e
children 12e8e431b43c
line wrap: on
line source

using Test

using Sbplib.SbpOperators
using Sbplib.Grids
using Sbplib.LazyTensors
using Sbplib.RegionIndices
using Sbplib.StaticDicts

operator_path = sbp_operators_path()*"standard_diagonal.toml"
# Default stencils (4th order)
stencil_set = read_stencil_set(operator_path; order=4)
inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
e_closure = parse_stencil(stencil_set["e"]["closure"])
d_closure = parse_stencil(stencil_set["d1"]["closure"])
quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
quadrature_closure = parse_tuple(stencil_set["H"]["closure"])

@testset "Laplace" begin
    g_1D = EquidistantGrid(101, 0.0, 1.)
    g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
    @testset "Constructors" begin

        @testset "1D" begin
            Δ = laplace(g_1D, inner_stencil, closure_stencils)
            H = inner_product(g_1D, quadrature_interior, quadrature_closure)
            Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure)

            (id_l, id_r) = boundary_identifiers(g_1D)

            e_l = boundary_restriction(g_1D, e_closure,id_l)
            e_r = boundary_restriction(g_1D, e_closure,id_r)
            e_dict = StaticDict(id_l => e_l, id_r => e_r)

            d_l = normal_derivative(g_1D, d_closure,id_l)
            d_r = normal_derivative(g_1D, d_closure,id_r)
            d_dict = StaticDict(id_l => d_l, id_r => d_r)

            H_l = inner_product(boundary_grid(g_1D,id_l), quadrature_interior, quadrature_closure)
            H_r = inner_product(boundary_grid(g_1D,id_r), quadrature_interior, quadrature_closure)
            Hb_dict = StaticDict(id_l => H_l, id_r => H_r)

            L = Laplace(g_1D, operator_path; order=4)
            @test L == Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict)
            @test L isa TensorMapping{T,1,1}  where T
            @inferred Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict)
            # REVIEW: The tests above seem very tied to the implementation. Is
            # it important that the components of the operator set are stored
            # in static dicts? Is something like below better?
            #
            # ```
            # L = Laplace(g_1D, operator_path; order=4)
            # @test L isa TensorMapping{T,1,1}  where T
            # @test boundary_restriction(L,id_l) ==  boundary_restriction(g_1D, e_closure,id_l)
            # ...
            # ```
            # I guess this is more or less simply a reorganization of the test and skipping testing for the struct layout
        end
        @testset "3D" begin
            Δ = laplace(g_3D, inner_stencil, closure_stencils)
            H = inner_product(g_3D, quadrature_interior, quadrature_closure)
            Hi = inverse_inner_product(g_3D, quadrature_interior, quadrature_closure)

            (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
            e_l = boundary_restriction(g_3D, e_closure,id_l)
            e_r = boundary_restriction(g_3D, e_closure,id_r)
            e_s = boundary_restriction(g_3D, e_closure,id_s)
            e_n = boundary_restriction(g_3D, e_closure,id_n)
            e_b = boundary_restriction(g_3D, e_closure,id_b)
            e_t = boundary_restriction(g_3D, e_closure,id_t)
            e_dict = StaticDict(id_l => e_l, id_r => e_r,
                                id_s => e_s, id_n => e_n,
                                id_b => e_b, id_t => e_t)

            d_l = normal_derivative(g_3D, d_closure,id_l)
            d_r = normal_derivative(g_3D, d_closure,id_r)
            d_s = normal_derivative(g_3D, d_closure,id_s)
            d_n = normal_derivative(g_3D, d_closure,id_n)
            d_b = normal_derivative(g_3D, d_closure,id_b)
            d_t = normal_derivative(g_3D, d_closure,id_t)
            d_dict = StaticDict(id_l => d_l, id_r => d_r,
                                id_s => d_s, id_n => d_n,
                                id_b => d_b, id_t => d_t)

            H_l = inner_product(boundary_grid(g_3D,id_l), quadrature_interior, quadrature_closure)
            H_r = inner_product(boundary_grid(g_3D,id_r), quadrature_interior, quadrature_closure)
            H_s = inner_product(boundary_grid(g_3D,id_s), quadrature_interior, quadrature_closure)
            H_n = inner_product(boundary_grid(g_3D,id_n), quadrature_interior, quadrature_closure)
            H_b = inner_product(boundary_grid(g_3D,id_b), quadrature_interior, quadrature_closure)
            H_t = inner_product(boundary_grid(g_3D,id_t), quadrature_interior, quadrature_closure)
            Hb_dict = StaticDict(id_l => H_l, id_r => H_r,
                                 id_s => H_s, id_n => H_n,
                                 id_b => H_b, id_t => H_t)

            L = Laplace(g_3D, operator_path; order=4)
            @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)
            @test L isa TensorMapping{T,3,3} where T
            @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)
        end
    end

    # REVIEW: Is this testset misplaced? Should it really be inside the "Laplace" testset?
    @testset "laplace" begin
        @testset "1D" begin
            L = laplace(g_1D, inner_stencil, closure_stencils)
            @test L == second_derivative(g_1D, inner_stencil, closure_stencils)
            @test L isa TensorMapping{T,1,1}  where T
        end
        @testset "3D" begin
            L = laplace(g_3D, inner_stencil, closure_stencils)
            @test L isa TensorMapping{T,3,3} where T
            Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1)
            Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2)
            Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3)
            @test L == Dxx + Dyy + Dzz
            @test L isa TensorMapping{T,3,3} where T
        end
    end

    @testset "inner_product" begin
        L = Laplace(g_3D, operator_path; order=4)
        @test inner_product(L) == inner_product(g_3D, quadrature_interior, quadrature_closure)
    end

    @testset "inverse_inner_product" begin
        L = Laplace(g_3D, operator_path; order=4)
        @test inverse_inner_product(L) == inverse_inner_product(g_3D, quadrature_interior, quadrature_closure)
    end

    @testset "boundary_restriction" begin
        L = Laplace(g_3D, operator_path; order=4)
        (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
        @test boundary_restriction(L, id_l) == boundary_restriction(g_3D, e_closure,id_l)
        @test boundary_restriction(L, id_r) == boundary_restriction(g_3D, e_closure,id_r)
        @test boundary_restriction(L, id_s) == boundary_restriction(g_3D, e_closure,id_s)
        @test boundary_restriction(L, id_n) == boundary_restriction(g_3D, e_closure,id_n)
        @test boundary_restriction(L, id_b) == boundary_restriction(g_3D, e_closure,id_b)
        @test boundary_restriction(L, id_t) == boundary_restriction(g_3D, e_closure,id_t)

        ids = boundary_identifiers(g_3D)
        es = boundary_restriction(L, ids)
        @test es ==  (boundary_restriction(L, id_l),
                      boundary_restriction(L, id_r),
                      boundary_restriction(L, id_s),
                      boundary_restriction(L, id_n),
                      boundary_restriction(L, id_b),
                      boundary_restriction(L, id_t));
        @test es == boundary_restriction(L, ids...)
    end

    @testset "normal_derivative" begin
        L = Laplace(g_3D, operator_path; order=4)
        (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
        @test normal_derivative(L, id_l) == normal_derivative(g_3D, d_closure,id_l)
        @test normal_derivative(L, id_r) == normal_derivative(g_3D, d_closure,id_r)
        @test normal_derivative(L, id_s) == normal_derivative(g_3D, d_closure,id_s)
        @test normal_derivative(L, id_n) == normal_derivative(g_3D, d_closure,id_n)
        @test normal_derivative(L, id_b) == normal_derivative(g_3D, d_closure,id_b)
        @test normal_derivative(L, id_t) == normal_derivative(g_3D, d_closure,id_t)

        ids = boundary_identifiers(g_3D)
        ds = normal_derivative(L, ids)
        @test ds ==  (normal_derivative(L, id_l),
                      normal_derivative(L, id_r),
                      normal_derivative(L, id_s),
                      normal_derivative(L, id_n),
                      normal_derivative(L, id_b),
                      normal_derivative(L, id_t));
        @test ds == normal_derivative(L, ids...)
    end

    @testset "boundary_quadrature" begin
        L = Laplace(g_3D, operator_path; order=4)
        (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
        @test boundary_quadrature(L, id_l) == inner_product(boundary_grid(g_3D, id_l), quadrature_interior, quadrature_closure)
        @test boundary_quadrature(L, id_r) == inner_product(boundary_grid(g_3D, id_r), quadrature_interior, quadrature_closure)
        @test boundary_quadrature(L, id_s) == inner_product(boundary_grid(g_3D, id_s), quadrature_interior, quadrature_closure)
        @test boundary_quadrature(L, id_n) == inner_product(boundary_grid(g_3D, id_n), quadrature_interior, quadrature_closure)
        @test boundary_quadrature(L, id_b) == inner_product(boundary_grid(g_3D, id_b), quadrature_interior, quadrature_closure)
        @test boundary_quadrature(L, id_t) == inner_product(boundary_grid(g_3D, id_t), quadrature_interior, quadrature_closure)

        ids = boundary_identifiers(g_3D)
        H_gammas = boundary_quadrature(L, ids)
        @test H_gammas ==  (boundary_quadrature(L, id_l),
                            boundary_quadrature(L, id_r),
                            boundary_quadrature(L, id_s),
                            boundary_quadrature(L, id_n),
                            boundary_quadrature(L, id_b),
                            boundary_quadrature(L, id_t));
        @test H_gammas == boundary_quadrature(L, ids...)
    end

    # Exact differentiation is measured point-wise. In other cases
    # the error is measured in the l2-norm.
    @testset "Accuracy" begin
        l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2));
        polynomials = ()
        maxOrder = 4;
        for i = 0:maxOrder-1
            f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i)
            polynomials = (polynomials...,evalOn(g_3D,f_i))
        end
        v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z))
        Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z))

        # 2nd order interior stencil, 1st order boundary stencil,
        # implies that L*v should be exact for binomials up to order 2.
        @testset "2nd order" begin
            stencil_set = read_stencil_set(operator_path; order=2)
            inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
            closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
            L = laplace(g_3D, inner_stencil, closure_stencils)
            @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
            @test L*v ≈ Δv rtol = 5e-2 norm = l2
        end

        # 4th order interior stencil, 2nd order boundary stencil,
        # implies that L*v should be exact for binomials up to order 3.
        @testset "4th order" begin
            stencil_set = read_stencil_set(operator_path; order=4)
            inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
            closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
            L = laplace(g_3D, inner_stencil, closure_stencils)
            # NOTE: high tolerances for checking the "exact" differentiation
            # due to accumulation of round-off errors/cancellation errors?
            @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
            @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
            @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9
            @test L*v ≈ Δv rtol = 5e-4 norm = l2
        end
    end
end