diff test/SbpOperators/volumeops/laplace/laplace_test.jl @ 924:12e8e431b43c feature/laplace_opset

Start restructuring Laplace making it more minimal.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 21 Feb 2022 13:12:47 +0100
parents 6a4d36eccf39
children 47425442bbc5
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/laplace/laplace_test.jl	Mon Feb 21 13:11:17 2022 +0100
+++ b/test/SbpOperators/volumeops/laplace/laplace_test.jl	Mon Feb 21 13:12:47 2022 +0100
@@ -4,17 +4,12 @@
 using Sbplib.Grids
 using Sbplib.LazyTensors
 using Sbplib.RegionIndices
-using Sbplib.StaticDicts
 
+# Default stencils (4th order)
 operator_path = sbp_operators_path()*"standard_diagonal.toml"
-# Default stencils (4th order)
 stencil_set = read_stencil_set(operator_path; order=4)
 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
-e_closure = parse_stencil(stencil_set["e"]["closure"])
-d_closure = parse_stencil(stencil_set["d1"]["closure"])
-quadrature_interior = parse_scalar(stencil_set["H"]["inner"])
-quadrature_closure = parse_tuple(stencil_set["H"]["closure"])
 
 @testset "Laplace" begin
     g_1D = EquidistantGrid(101, 0.0, 1.)
@@ -23,173 +18,16 @@
 
         @testset "1D" begin
             Δ = laplace(g_1D, inner_stencil, closure_stencils)
-            H = inner_product(g_1D, quadrature_interior, quadrature_closure)
-            Hi = inverse_inner_product(g_1D, quadrature_interior, quadrature_closure)
-
-            (id_l, id_r) = boundary_identifiers(g_1D)
-
-            e_l = boundary_restriction(g_1D, e_closure,id_l)
-            e_r = boundary_restriction(g_1D, e_closure,id_r)
-            e_dict = StaticDict(id_l => e_l, id_r => e_r)
-
-            d_l = normal_derivative(g_1D, d_closure,id_l)
-            d_r = normal_derivative(g_1D, d_closure,id_r)
-            d_dict = StaticDict(id_l => d_l, id_r => d_r)
-
-            H_l = inner_product(boundary_grid(g_1D,id_l), quadrature_interior, quadrature_closure)
-            H_r = inner_product(boundary_grid(g_1D,id_r), quadrature_interior, quadrature_closure)
-            Hb_dict = StaticDict(id_l => H_l, id_r => H_r)
-
-            L = Laplace(g_1D, operator_path; order=4)
-            @test L == Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict)
-            @test L isa TensorMapping{T,1,1}  where T
-            @inferred Laplace(Δ, H, Hi, e_dict, d_dict, Hb_dict)
-            # REVIEW: The tests above seem very tied to the implementation. Is
-            # it important that the components of the operator set are stored
-            # in static dicts? Is something like below better?
-            #
-            # ```
-            # L = Laplace(g_1D, operator_path; order=4)
-            # @test L isa TensorMapping{T,1,1}  where T
-            # @test boundary_restriction(L,id_l) ==  boundary_restriction(g_1D, e_closure,id_l)
-            # ...
-            # ```
-            # I guess this is more or less simply a reorganization of the test and skipping testing for the struct layout
+            @test Laplace(g_1D, stencil_set) == Laplace(Δ, stencil_set)
+            @test Laplace(g_1D, stencil_set) isa TensorMapping{T,1,1}  where T
         end
         @testset "3D" begin
             Δ = laplace(g_3D, inner_stencil, closure_stencils)
-            H = inner_product(g_3D, quadrature_interior, quadrature_closure)
-            Hi = inverse_inner_product(g_3D, quadrature_interior, quadrature_closure)
-
-            (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
-            e_l = boundary_restriction(g_3D, e_closure,id_l)
-            e_r = boundary_restriction(g_3D, e_closure,id_r)
-            e_s = boundary_restriction(g_3D, e_closure,id_s)
-            e_n = boundary_restriction(g_3D, e_closure,id_n)
-            e_b = boundary_restriction(g_3D, e_closure,id_b)
-            e_t = boundary_restriction(g_3D, e_closure,id_t)
-            e_dict = StaticDict(id_l => e_l, id_r => e_r,
-                                id_s => e_s, id_n => e_n,
-                                id_b => e_b, id_t => e_t)
-
-            d_l = normal_derivative(g_3D, d_closure,id_l)
-            d_r = normal_derivative(g_3D, d_closure,id_r)
-            d_s = normal_derivative(g_3D, d_closure,id_s)
-            d_n = normal_derivative(g_3D, d_closure,id_n)
-            d_b = normal_derivative(g_3D, d_closure,id_b)
-            d_t = normal_derivative(g_3D, d_closure,id_t)
-            d_dict = StaticDict(id_l => d_l, id_r => d_r,
-                                id_s => d_s, id_n => d_n,
-                                id_b => d_b, id_t => d_t)
-
-            H_l = inner_product(boundary_grid(g_3D,id_l), quadrature_interior, quadrature_closure)
-            H_r = inner_product(boundary_grid(g_3D,id_r), quadrature_interior, quadrature_closure)
-            H_s = inner_product(boundary_grid(g_3D,id_s), quadrature_interior, quadrature_closure)
-            H_n = inner_product(boundary_grid(g_3D,id_n), quadrature_interior, quadrature_closure)
-            H_b = inner_product(boundary_grid(g_3D,id_b), quadrature_interior, quadrature_closure)
-            H_t = inner_product(boundary_grid(g_3D,id_t), quadrature_interior, quadrature_closure)
-            Hb_dict = StaticDict(id_l => H_l, id_r => H_r,
-                                 id_s => H_s, id_n => H_n,
-                                 id_b => H_b, id_t => H_t)
-
-            L = Laplace(g_3D, operator_path; order=4)
-            @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)
-            @test L isa TensorMapping{T,3,3} where T
-            @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)
-        end
-    end
-
-    # REVIEW: Is this testset misplaced? Should it really be inside the "Laplace" testset?
-    @testset "laplace" begin
-        @testset "1D" begin
-            L = laplace(g_1D, inner_stencil, closure_stencils)
-            @test L == second_derivative(g_1D, inner_stencil, closure_stencils)
-            @test L isa TensorMapping{T,1,1}  where T
-        end
-        @testset "3D" begin
-            L = laplace(g_3D, inner_stencil, closure_stencils)
-            @test L isa TensorMapping{T,3,3} where T
-            Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1)
-            Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2)
-            Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3)
-            @test L == Dxx + Dyy + Dzz
-            @test L isa TensorMapping{T,3,3} where T
+            @test Laplace(g_3D, stencil_set) == Laplace(Δ,stencil_set)
+            @test Laplace(g_3D, stencil_set) isa TensorMapping{T,3,3} where T
         end
     end
 
-    @testset "inner_product" begin
-        L = Laplace(g_3D, operator_path; order=4)
-        @test inner_product(L) == inner_product(g_3D, quadrature_interior, quadrature_closure)
-    end
-
-    @testset "inverse_inner_product" begin
-        L = Laplace(g_3D, operator_path; order=4)
-        @test inverse_inner_product(L) == inverse_inner_product(g_3D, quadrature_interior, quadrature_closure)
-    end
-
-    @testset "boundary_restriction" begin
-        L = Laplace(g_3D, operator_path; order=4)
-        (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
-        @test boundary_restriction(L, id_l) == boundary_restriction(g_3D, e_closure,id_l)
-        @test boundary_restriction(L, id_r) == boundary_restriction(g_3D, e_closure,id_r)
-        @test boundary_restriction(L, id_s) == boundary_restriction(g_3D, e_closure,id_s)
-        @test boundary_restriction(L, id_n) == boundary_restriction(g_3D, e_closure,id_n)
-        @test boundary_restriction(L, id_b) == boundary_restriction(g_3D, e_closure,id_b)
-        @test boundary_restriction(L, id_t) == boundary_restriction(g_3D, e_closure,id_t)
-
-        ids = boundary_identifiers(g_3D)
-        es = boundary_restriction(L, ids)
-        @test es ==  (boundary_restriction(L, id_l),
-                      boundary_restriction(L, id_r),
-                      boundary_restriction(L, id_s),
-                      boundary_restriction(L, id_n),
-                      boundary_restriction(L, id_b),
-                      boundary_restriction(L, id_t));
-        @test es == boundary_restriction(L, ids...)
-    end
-
-    @testset "normal_derivative" begin
-        L = Laplace(g_3D, operator_path; order=4)
-        (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
-        @test normal_derivative(L, id_l) == normal_derivative(g_3D, d_closure,id_l)
-        @test normal_derivative(L, id_r) == normal_derivative(g_3D, d_closure,id_r)
-        @test normal_derivative(L, id_s) == normal_derivative(g_3D, d_closure,id_s)
-        @test normal_derivative(L, id_n) == normal_derivative(g_3D, d_closure,id_n)
-        @test normal_derivative(L, id_b) == normal_derivative(g_3D, d_closure,id_b)
-        @test normal_derivative(L, id_t) == normal_derivative(g_3D, d_closure,id_t)
-
-        ids = boundary_identifiers(g_3D)
-        ds = normal_derivative(L, ids)
-        @test ds ==  (normal_derivative(L, id_l),
-                      normal_derivative(L, id_r),
-                      normal_derivative(L, id_s),
-                      normal_derivative(L, id_n),
-                      normal_derivative(L, id_b),
-                      normal_derivative(L, id_t));
-        @test ds == normal_derivative(L, ids...)
-    end
-
-    @testset "boundary_quadrature" begin
-        L = Laplace(g_3D, operator_path; order=4)
-        (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D)
-        @test boundary_quadrature(L, id_l) == inner_product(boundary_grid(g_3D, id_l), quadrature_interior, quadrature_closure)
-        @test boundary_quadrature(L, id_r) == inner_product(boundary_grid(g_3D, id_r), quadrature_interior, quadrature_closure)
-        @test boundary_quadrature(L, id_s) == inner_product(boundary_grid(g_3D, id_s), quadrature_interior, quadrature_closure)
-        @test boundary_quadrature(L, id_n) == inner_product(boundary_grid(g_3D, id_n), quadrature_interior, quadrature_closure)
-        @test boundary_quadrature(L, id_b) == inner_product(boundary_grid(g_3D, id_b), quadrature_interior, quadrature_closure)
-        @test boundary_quadrature(L, id_t) == inner_product(boundary_grid(g_3D, id_t), quadrature_interior, quadrature_closure)
-
-        ids = boundary_identifiers(g_3D)
-        H_gammas = boundary_quadrature(L, ids)
-        @test H_gammas ==  (boundary_quadrature(L, id_l),
-                            boundary_quadrature(L, id_r),
-                            boundary_quadrature(L, id_s),
-                            boundary_quadrature(L, id_n),
-                            boundary_quadrature(L, id_b),
-                            boundary_quadrature(L, id_t));
-        @test H_gammas == boundary_quadrature(L, ids...)
-    end
-
     # Exact differentiation is measured point-wise. In other cases
     # the error is measured in the l2-norm.
     @testset "Accuracy" begin
@@ -207,29 +45,43 @@
         # implies that L*v should be exact for binomials up to order 2.
         @testset "2nd order" begin
             stencil_set = read_stencil_set(operator_path; order=2)
-            inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
-            closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
-            L = laplace(g_3D, inner_stencil, closure_stencils)
-            @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
-            @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
-            @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
-            @test L*v ≈ Δv rtol = 5e-2 norm = l2
+            Δ = Laplace(g_3D, stencil_set)
+            @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9
+            @test Δ*v ≈ Δv rtol = 5e-2 norm = l2
         end
 
         # 4th order interior stencil, 2nd order boundary stencil,
         # implies that L*v should be exact for binomials up to order 3.
         @testset "4th order" begin
             stencil_set = read_stencil_set(operator_path; order=4)
-            inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
-            closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
-            L = laplace(g_3D, inner_stencil, closure_stencils)
+            Δ = Laplace(g_3D, stencil_set)
             # NOTE: high tolerances for checking the "exact" differentiation
             # due to accumulation of round-off errors/cancellation errors?
-            @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
-            @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
-            @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
-            @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9
-            @test L*v ≈ Δv rtol = 5e-4 norm = l2
+            @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
+            @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9
+            @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9
+            @test Δ*v ≈ Δv rtol = 5e-4 norm = l2
         end
     end
 end
+
+@testset "laplace" begin
+    @testset "1D" begin
+        Δ = laplace(g_1D, inner_stencil, closure_stencils)
+        @test Δ == second_derivative(g_1D, inner_stencil, closure_stencils)
+        @test Δ isa TensorMapping{T,1,1}  where T
+    end
+    @testset "3D" begin
+        Δ = laplace(g_3D, inner_stencil, closure_stencils)
+        @test Δ isa TensorMapping{T,3,3} where T
+        Dxx = second_derivative(g_3D, inner_stencil, closure_stencils, 1)
+        Dyy = second_derivative(g_3D, inner_stencil, closure_stencils, 2)
+        Dzz = second_derivative(g_3D, inner_stencil, closure_stencils, 3)
+        @test Δ == Dxx + Dyy + Dzz
+        @test Δ isa TensorMapping{T,3,3} where T
+    end
+end
+