Mercurial > repos > public > sbplib_julia
diff test/testLazyTensors.jl @ 333:01b851161018 refactor/combine_to_one_package
Start converting to one package by moving all the files to their correct location
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 13:06:02 +0200 |
parents | LazyTensors/test/runtests.jl@41c3c25e4e3b |
children | f4e3e71a4ff4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/testLazyTensors.jl Fri Sep 25 13:06:02 2020 +0200 @@ -0,0 +1,191 @@ +using Test +using LazyTensors +using RegionIndices + +@testset "Generic Mapping methods" begin + struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end + LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply + @test range_dim(DummyMapping{Int,2,3}()) == 2 + @test domain_dim(DummyMapping{Int,2,3}()) == 3 + @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply +end + +@testset "Generic Operator methods" begin + struct DummyOperator{T,D} <: TensorOperator{T,D} end + @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5) + @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1) +end + +@testset "Mapping transpose" begin + struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end + + LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply + LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose + + LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size + LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size + + m = DummyMapping{Float64,2,3}() + I = Index{Unknown}(0) + @test m' isa TensorMapping{Float64, 3,2} + @test m'' == m + @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose + @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply + @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply + + @test range_size(m', (0,0)) == :domain_size + @test domain_size(m', (0,0,0)) == :range_size +end + +@testset "TensorApplication" begin + struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end + + LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i) + LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size + LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2 + + + m = DummyMapping{Int, 1, 1}() + v = [0,1,2] + @test m*v isa AbstractVector{Int} + @test size(m*v) == 2 .*size(v) + @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),)) + @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),)) + @test m*m*v isa AbstractVector{Int} + @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),)) + @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),)) + @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),)) + @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),)) + @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),)) + @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),)) + @test_broken BoundsError == (m*m*v)[0] + @test_broken BoundsError == (m*m*v)[7] + + m = DummyMapping{Int, 2, 1}() + @test_throws MethodError m*ones(Int,2,2) + @test_throws MethodError m*m*v + + m = DummyMapping{Float64, 2, 2}() + v = ones(3,3) + I = (Index{Lower}(1),Index{Interior}(2)); + @test size(m*v) == 2 .*size(v) + @test (m*v)[I] == (:apply,v,I) + + struct ScalingOperator{T,D} <: TensorOperator{T,D} + λ::T + end + + LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] + + m = ScalingOperator{Int,1}(2) + v = [1,2,3] + @test m*v isa AbstractVector + @test m*v == [2,4,6] + + m = ScalingOperator{Int,2}(2) + v = [[1 2];[3 4]] + @test m*v == [[2 4];[6 8]] + I = (Index{Upper}(2),Index{Lower}(1)) + @test (m*v)[I] == 6 +end + +@testset "TensorMapping binary operations" begin + struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} + λ::T + end + + LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...] + LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size + LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes + + A = ScalarMapping{Float64,1,1}(2.0) + B = ScalarMapping{Float64,1,1}(3.0) + + v = [1.1,1.2,1.3] + for i ∈ eachindex(v) + @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] + end + + for i ∈ eachindex(v) + @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] + end + + @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,)) + @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,)) +end + +@testset "LazyArray" begin + @testset "LazyConstantArray" begin + @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2} + + lca = LazyTensors.LazyConstantArray(3.0,(3,2)) + @test eltype(lca) == Float64 + @test ndims(lca) == 2 + @test size(lca) == (3,2) + @test lca[2] == 3.0 + end + struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} + data::T1 + end + Base.size(v::DummyArray) = size(v.data) + Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...] + + # Test lazy operations + v1 = [1, 2.3, 4] + v2 = [1., 2, 3] + s = 3.4 + r_add_v = v1 .+ v2 + r_sub_v = v1 .- v2 + r_times_v = v1 .* v2 + r_div_v = v1 ./ v2 + r_add_s = v1 .+ s + r_sub_s = v1 .- s + r_times_s = v1 .* s + r_div_s = v1 ./ s + @test isa(v1 +̃ v2, LazyArray) + @test isa(v1 -̃ v2, LazyArray) + @test isa(v1 *̃ v2, LazyArray) + @test isa(v1 /̃ v2, LazyArray) + @test isa(v1 +̃ s, LazyArray) + @test isa(v1 -̃ s, LazyArray) + @test isa(v1 *̃ s, LazyArray) + @test isa(v1 /̃ s, LazyArray) + @test isa(s +̃ v1, LazyArray) + @test isa(s -̃ v1, LazyArray) + @test isa(s *̃ v1, LazyArray) + @test isa(s /̃ v1, LazyArray) + for i ∈ eachindex(v1) + @test (v1 +̃ v2)[i] == r_add_v[i] + @test (v1 -̃ v2)[i] == r_sub_v[i] + @test (v1 *̃ v2)[i] == r_times_v[i] + @test (v1 /̃ v2)[i] == r_div_v[i] + @test (v1 +̃ s)[i] == r_add_s[i] + @test (v1 -̃ s)[i] == r_sub_s[i] + @test (v1 *̃ s)[i] == r_times_s[i] + @test (v1 /̃ s)[i] == r_div_s[i] + @test (s +̃ v1)[i] == r_add_s[i] + @test (s -̃ v1)[i] == -r_sub_s[i] + @test (s *̃ v1)[i] == r_times_s[i] + @test (s /̃ v1)[i] == 1/r_div_s[i] + end + @test_throws BoundsError (v1 +̃ v2)[4] + v2 = [1., 2, 3, 4] + # Test that size of arrays is asserted when not specified inbounds + @test_throws DimensionMismatch v1 +̃ v2 + + # Test operations on LazyArray + v1 = DummyArray([1, 2.3, 4]) + v2 = [1., 2, 3] + @test isa(v1 + v2, LazyArray) + @test isa(v2 + v1, LazyArray) + @test isa(v1 - v2, LazyArray) + @test isa(v2 - v1, LazyArray) + for i ∈ eachindex(v2) + @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i] + @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i] + end + @test_throws BoundsError (v1 + v2)[4] + v2 = [1., 2, 3, 4] + # Test that size of arrays is asserted when not specified inbounds + @test_throws DimensionMismatch v1 + v2 +end