diff test/testLazyTensors.jl @ 333:01b851161018 refactor/combine_to_one_package

Start converting to one package by moving all the files to their correct location
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 25 Sep 2020 13:06:02 +0200
parents LazyTensors/test/runtests.jl@41c3c25e4e3b
children f4e3e71a4ff4
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/testLazyTensors.jl	Fri Sep 25 13:06:02 2020 +0200
@@ -0,0 +1,191 @@
+using Test
+using LazyTensors
+using RegionIndices
+
+@testset "Generic Mapping methods" begin
+    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
+    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply
+    @test range_dim(DummyMapping{Int,2,3}()) == 2
+    @test domain_dim(DummyMapping{Int,2,3}()) == 3
+    @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply
+end
+
+@testset "Generic Operator methods" begin
+    struct DummyOperator{T,D} <: TensorOperator{T,D} end
+    @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5)
+    @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1)
+end
+
+@testset "Mapping transpose" begin
+    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
+
+    LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply
+    LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose
+
+    LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size
+    LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size
+
+    m = DummyMapping{Float64,2,3}()
+    I = Index{Unknown}(0)
+    @test m' isa TensorMapping{Float64, 3,2}
+    @test m'' == m
+    @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose
+    @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply
+    @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply
+
+    @test range_size(m', (0,0)) == :domain_size
+    @test domain_size(m', (0,0,0)) == :range_size
+end
+
+@testset "TensorApplication" begin
+    struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
+
+    LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i)
+    LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size
+    LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2
+
+
+    m = DummyMapping{Int, 1, 1}()
+    v = [0,1,2]
+    @test m*v isa AbstractVector{Int}
+    @test size(m*v) == 2 .*size(v)
+    @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),))
+    @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),))
+    @test m*m*v isa AbstractVector{Int}
+    @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),))
+    @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),))
+    @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),))
+    @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),))
+    @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),))
+    @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),))
+    @test_broken BoundsError == (m*m*v)[0]
+    @test_broken BoundsError == (m*m*v)[7]
+
+    m = DummyMapping{Int, 2, 1}()
+    @test_throws MethodError m*ones(Int,2,2)
+    @test_throws MethodError m*m*v
+
+    m = DummyMapping{Float64, 2, 2}()
+    v = ones(3,3)
+    I = (Index{Lower}(1),Index{Interior}(2));
+    @test size(m*v) == 2 .*size(v)
+    @test (m*v)[I] == (:apply,v,I)
+
+    struct ScalingOperator{T,D} <: TensorOperator{T,D}
+        λ::T
+    end
+
+    LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I]
+
+    m = ScalingOperator{Int,1}(2)
+    v = [1,2,3]
+    @test m*v isa AbstractVector
+    @test m*v == [2,4,6]
+
+    m = ScalingOperator{Int,2}(2)
+    v = [[1 2];[3 4]]
+    @test m*v == [[2 4];[6 8]]
+    I = (Index{Upper}(2),Index{Lower}(1))
+    @test (m*v)[I] == 6
+end
+
+@testset "TensorMapping binary operations" begin
+    struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D}
+        λ::T
+    end
+
+    LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...]
+    LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size
+    LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes
+
+    A = ScalarMapping{Float64,1,1}(2.0)
+    B = ScalarMapping{Float64,1,1}(3.0)
+
+    v = [1.1,1.2,1.3]
+    for i ∈ eachindex(v)
+        @test ((A+B)*v)[i] == 2*v[i] + 3*v[i]
+    end
+
+    for i ∈ eachindex(v)
+        @test ((A-B)*v)[i] == 2*v[i] - 3*v[i]
+    end
+
+    @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,))
+    @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,))
+end
+
+@testset "LazyArray" begin
+	@testset "LazyConstantArray" begin
+	    @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2}
+
+	    lca = LazyTensors.LazyConstantArray(3.0,(3,2))
+	    @test eltype(lca) == Float64
+	    @test ndims(lca) == 2
+	    @test size(lca) == (3,2)
+	    @test lca[2] == 3.0
+	end
+    struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D}
+        data::T1
+    end
+    Base.size(v::DummyArray) = size(v.data)
+    Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...]
+
+    # Test lazy operations
+    v1 = [1, 2.3, 4]
+    v2 = [1., 2, 3]
+    s = 3.4
+    r_add_v = v1 .+ v2
+    r_sub_v = v1 .- v2
+    r_times_v = v1 .* v2
+    r_div_v = v1 ./ v2
+    r_add_s = v1 .+ s
+    r_sub_s = v1 .- s
+    r_times_s = v1 .* s
+    r_div_s = v1 ./ s
+    @test isa(v1 +̃ v2, LazyArray)
+    @test isa(v1 -̃ v2, LazyArray)
+    @test isa(v1 *̃ v2, LazyArray)
+    @test isa(v1 /̃ v2, LazyArray)
+    @test isa(v1 +̃ s, LazyArray)
+    @test isa(v1 -̃ s, LazyArray)
+    @test isa(v1 *̃ s, LazyArray)
+    @test isa(v1 /̃ s, LazyArray)
+    @test isa(s +̃ v1, LazyArray)
+    @test isa(s -̃ v1, LazyArray)
+    @test isa(s *̃ v1, LazyArray)
+    @test isa(s /̃ v1, LazyArray)
+    for i ∈ eachindex(v1)
+        @test (v1 +̃ v2)[i] == r_add_v[i]
+        @test (v1 -̃ v2)[i] == r_sub_v[i]
+        @test (v1 *̃ v2)[i] == r_times_v[i]
+        @test (v1 /̃ v2)[i] == r_div_v[i]
+        @test (v1 +̃ s)[i] == r_add_s[i]
+        @test (v1 -̃ s)[i] == r_sub_s[i]
+        @test (v1 *̃ s)[i] == r_times_s[i]
+        @test (v1 /̃ s)[i] == r_div_s[i]
+        @test (s +̃ v1)[i] == r_add_s[i]
+        @test (s -̃ v1)[i] == -r_sub_s[i]
+        @test (s *̃ v1)[i] == r_times_s[i]
+        @test (s /̃ v1)[i] == 1/r_div_s[i]
+    end
+    @test_throws BoundsError (v1 +̃  v2)[4]
+    v2 = [1., 2, 3, 4]
+    # Test that size of arrays is asserted when not specified inbounds
+    @test_throws DimensionMismatch v1 +̃ v2
+
+    # Test operations on LazyArray
+    v1 = DummyArray([1, 2.3, 4])
+    v2 = [1., 2, 3]
+    @test isa(v1 + v2, LazyArray)
+    @test isa(v2 + v1, LazyArray)
+    @test isa(v1 - v2, LazyArray)
+    @test isa(v2 - v1, LazyArray)
+    for i ∈ eachindex(v2)
+        @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i]
+        @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i]
+    end
+    @test_throws BoundsError (v1 + v2)[4]
+    v2 = [1., 2, 3, 4]
+    # Test that size of arrays is asserted when not specified inbounds
+    @test_throws DimensionMismatch v1 + v2
+end