comparison test/testLazyTensors.jl @ 333:01b851161018 refactor/combine_to_one_package

Start converting to one package by moving all the files to their correct location
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 25 Sep 2020 13:06:02 +0200
parents LazyTensors/test/runtests.jl@41c3c25e4e3b
children f4e3e71a4ff4
comparison
equal deleted inserted replaced
332:535f1bff4bcc 333:01b851161018
1 using Test
2 using LazyTensors
3 using RegionIndices
4
5 @testset "Generic Mapping methods" begin
6 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
7 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply
8 @test range_dim(DummyMapping{Int,2,3}()) == 2
9 @test domain_dim(DummyMapping{Int,2,3}()) == 3
10 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply
11 end
12
13 @testset "Generic Operator methods" begin
14 struct DummyOperator{T,D} <: TensorOperator{T,D} end
15 @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5)
16 @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1)
17 end
18
19 @testset "Mapping transpose" begin
20 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
21
22 LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply
23 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose
24
25 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size
26 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size
27
28 m = DummyMapping{Float64,2,3}()
29 I = Index{Unknown}(0)
30 @test m' isa TensorMapping{Float64, 3,2}
31 @test m'' == m
32 @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose
33 @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply
34 @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply
35
36 @test range_size(m', (0,0)) == :domain_size
37 @test domain_size(m', (0,0,0)) == :range_size
38 end
39
40 @testset "TensorApplication" begin
41 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end
42
43 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i)
44 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size
45 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2
46
47
48 m = DummyMapping{Int, 1, 1}()
49 v = [0,1,2]
50 @test m*v isa AbstractVector{Int}
51 @test size(m*v) == 2 .*size(v)
52 @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),))
53 @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),))
54 @test m*m*v isa AbstractVector{Int}
55 @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),))
56 @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),))
57 @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),))
58 @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),))
59 @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),))
60 @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),))
61 @test_broken BoundsError == (m*m*v)[0]
62 @test_broken BoundsError == (m*m*v)[7]
63
64 m = DummyMapping{Int, 2, 1}()
65 @test_throws MethodError m*ones(Int,2,2)
66 @test_throws MethodError m*m*v
67
68 m = DummyMapping{Float64, 2, 2}()
69 v = ones(3,3)
70 I = (Index{Lower}(1),Index{Interior}(2));
71 @test size(m*v) == 2 .*size(v)
72 @test (m*v)[I] == (:apply,v,I)
73
74 struct ScalingOperator{T,D} <: TensorOperator{T,D}
75 λ::T
76 end
77
78 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I]
79
80 m = ScalingOperator{Int,1}(2)
81 v = [1,2,3]
82 @test m*v isa AbstractVector
83 @test m*v == [2,4,6]
84
85 m = ScalingOperator{Int,2}(2)
86 v = [[1 2];[3 4]]
87 @test m*v == [[2 4];[6 8]]
88 I = (Index{Upper}(2),Index{Lower}(1))
89 @test (m*v)[I] == 6
90 end
91
92 @testset "TensorMapping binary operations" begin
93 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D}
94 λ::T
95 end
96
97 LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...]
98 LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size
99 LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes
100
101 A = ScalarMapping{Float64,1,1}(2.0)
102 B = ScalarMapping{Float64,1,1}(3.0)
103
104 v = [1.1,1.2,1.3]
105 for i ∈ eachindex(v)
106 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i]
107 end
108
109 for i ∈ eachindex(v)
110 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i]
111 end
112
113 @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,))
114 @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,))
115 end
116
117 @testset "LazyArray" begin
118 @testset "LazyConstantArray" begin
119 @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2}
120
121 lca = LazyTensors.LazyConstantArray(3.0,(3,2))
122 @test eltype(lca) == Float64
123 @test ndims(lca) == 2
124 @test size(lca) == (3,2)
125 @test lca[2] == 3.0
126 end
127 struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D}
128 data::T1
129 end
130 Base.size(v::DummyArray) = size(v.data)
131 Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...]
132
133 # Test lazy operations
134 v1 = [1, 2.3, 4]
135 v2 = [1., 2, 3]
136 s = 3.4
137 r_add_v = v1 .+ v2
138 r_sub_v = v1 .- v2
139 r_times_v = v1 .* v2
140 r_div_v = v1 ./ v2
141 r_add_s = v1 .+ s
142 r_sub_s = v1 .- s
143 r_times_s = v1 .* s
144 r_div_s = v1 ./ s
145 @test isa(v1 +̃ v2, LazyArray)
146 @test isa(v1 -̃ v2, LazyArray)
147 @test isa(v1 *̃ v2, LazyArray)
148 @test isa(v1 /̃ v2, LazyArray)
149 @test isa(v1 +̃ s, LazyArray)
150 @test isa(v1 -̃ s, LazyArray)
151 @test isa(v1 *̃ s, LazyArray)
152 @test isa(v1 /̃ s, LazyArray)
153 @test isa(s +̃ v1, LazyArray)
154 @test isa(s -̃ v1, LazyArray)
155 @test isa(s *̃ v1, LazyArray)
156 @test isa(s /̃ v1, LazyArray)
157 for i ∈ eachindex(v1)
158 @test (v1 +̃ v2)[i] == r_add_v[i]
159 @test (v1 -̃ v2)[i] == r_sub_v[i]
160 @test (v1 *̃ v2)[i] == r_times_v[i]
161 @test (v1 /̃ v2)[i] == r_div_v[i]
162 @test (v1 +̃ s)[i] == r_add_s[i]
163 @test (v1 -̃ s)[i] == r_sub_s[i]
164 @test (v1 *̃ s)[i] == r_times_s[i]
165 @test (v1 /̃ s)[i] == r_div_s[i]
166 @test (s +̃ v1)[i] == r_add_s[i]
167 @test (s -̃ v1)[i] == -r_sub_s[i]
168 @test (s *̃ v1)[i] == r_times_s[i]
169 @test (s /̃ v1)[i] == 1/r_div_s[i]
170 end
171 @test_throws BoundsError (v1 +̃ v2)[4]
172 v2 = [1., 2, 3, 4]
173 # Test that size of arrays is asserted when not specified inbounds
174 @test_throws DimensionMismatch v1 +̃ v2
175
176 # Test operations on LazyArray
177 v1 = DummyArray([1, 2.3, 4])
178 v2 = [1., 2, 3]
179 @test isa(v1 + v2, LazyArray)
180 @test isa(v2 + v1, LazyArray)
181 @test isa(v1 - v2, LazyArray)
182 @test isa(v2 - v1, LazyArray)
183 for i ∈ eachindex(v2)
184 @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i]
185 @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i]
186 end
187 @test_throws BoundsError (v1 + v2)[4]
188 v2 = [1., 2, 3, 4]
189 # Test that size of arrays is asserted when not specified inbounds
190 @test_throws DimensionMismatch v1 + v2
191 end