Mercurial > repos > public > sbplib_julia
comparison test/testLazyTensors.jl @ 333:01b851161018 refactor/combine_to_one_package
Start converting to one package by moving all the files to their correct location
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 13:06:02 +0200 |
parents | LazyTensors/test/runtests.jl@41c3c25e4e3b |
children | f4e3e71a4ff4 |
comparison
equal
deleted
inserted
replaced
332:535f1bff4bcc | 333:01b851161018 |
---|---|
1 using Test | |
2 using LazyTensors | |
3 using RegionIndices | |
4 | |
5 @testset "Generic Mapping methods" begin | |
6 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
7 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply | |
8 @test range_dim(DummyMapping{Int,2,3}()) == 2 | |
9 @test domain_dim(DummyMapping{Int,2,3}()) == 3 | |
10 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply | |
11 end | |
12 | |
13 @testset "Generic Operator methods" begin | |
14 struct DummyOperator{T,D} <: TensorOperator{T,D} end | |
15 @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5) | |
16 @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1) | |
17 end | |
18 | |
19 @testset "Mapping transpose" begin | |
20 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
21 | |
22 LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply | |
23 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose | |
24 | |
25 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size | |
26 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size | |
27 | |
28 m = DummyMapping{Float64,2,3}() | |
29 I = Index{Unknown}(0) | |
30 @test m' isa TensorMapping{Float64, 3,2} | |
31 @test m'' == m | |
32 @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose | |
33 @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply | |
34 @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply | |
35 | |
36 @test range_size(m', (0,0)) == :domain_size | |
37 @test domain_size(m', (0,0,0)) == :range_size | |
38 end | |
39 | |
40 @testset "TensorApplication" begin | |
41 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
42 | |
43 LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i) | |
44 LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size | |
45 LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2 | |
46 | |
47 | |
48 m = DummyMapping{Int, 1, 1}() | |
49 v = [0,1,2] | |
50 @test m*v isa AbstractVector{Int} | |
51 @test size(m*v) == 2 .*size(v) | |
52 @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),)) | |
53 @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),)) | |
54 @test m*m*v isa AbstractVector{Int} | |
55 @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),)) | |
56 @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),)) | |
57 @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),)) | |
58 @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),)) | |
59 @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),)) | |
60 @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),)) | |
61 @test_broken BoundsError == (m*m*v)[0] | |
62 @test_broken BoundsError == (m*m*v)[7] | |
63 | |
64 m = DummyMapping{Int, 2, 1}() | |
65 @test_throws MethodError m*ones(Int,2,2) | |
66 @test_throws MethodError m*m*v | |
67 | |
68 m = DummyMapping{Float64, 2, 2}() | |
69 v = ones(3,3) | |
70 I = (Index{Lower}(1),Index{Interior}(2)); | |
71 @test size(m*v) == 2 .*size(v) | |
72 @test (m*v)[I] == (:apply,v,I) | |
73 | |
74 struct ScalingOperator{T,D} <: TensorOperator{T,D} | |
75 λ::T | |
76 end | |
77 | |
78 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] | |
79 | |
80 m = ScalingOperator{Int,1}(2) | |
81 v = [1,2,3] | |
82 @test m*v isa AbstractVector | |
83 @test m*v == [2,4,6] | |
84 | |
85 m = ScalingOperator{Int,2}(2) | |
86 v = [[1 2];[3 4]] | |
87 @test m*v == [[2 4];[6 8]] | |
88 I = (Index{Upper}(2),Index{Lower}(1)) | |
89 @test (m*v)[I] == 6 | |
90 end | |
91 | |
92 @testset "TensorMapping binary operations" begin | |
93 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} | |
94 λ::T | |
95 end | |
96 | |
97 LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...] | |
98 LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size | |
99 LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes | |
100 | |
101 A = ScalarMapping{Float64,1,1}(2.0) | |
102 B = ScalarMapping{Float64,1,1}(3.0) | |
103 | |
104 v = [1.1,1.2,1.3] | |
105 for i ∈ eachindex(v) | |
106 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] | |
107 end | |
108 | |
109 for i ∈ eachindex(v) | |
110 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] | |
111 end | |
112 | |
113 @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,)) | |
114 @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,)) | |
115 end | |
116 | |
117 @testset "LazyArray" begin | |
118 @testset "LazyConstantArray" begin | |
119 @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2} | |
120 | |
121 lca = LazyTensors.LazyConstantArray(3.0,(3,2)) | |
122 @test eltype(lca) == Float64 | |
123 @test ndims(lca) == 2 | |
124 @test size(lca) == (3,2) | |
125 @test lca[2] == 3.0 | |
126 end | |
127 struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} | |
128 data::T1 | |
129 end | |
130 Base.size(v::DummyArray) = size(v.data) | |
131 Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...] | |
132 | |
133 # Test lazy operations | |
134 v1 = [1, 2.3, 4] | |
135 v2 = [1., 2, 3] | |
136 s = 3.4 | |
137 r_add_v = v1 .+ v2 | |
138 r_sub_v = v1 .- v2 | |
139 r_times_v = v1 .* v2 | |
140 r_div_v = v1 ./ v2 | |
141 r_add_s = v1 .+ s | |
142 r_sub_s = v1 .- s | |
143 r_times_s = v1 .* s | |
144 r_div_s = v1 ./ s | |
145 @test isa(v1 +̃ v2, LazyArray) | |
146 @test isa(v1 -̃ v2, LazyArray) | |
147 @test isa(v1 *̃ v2, LazyArray) | |
148 @test isa(v1 /̃ v2, LazyArray) | |
149 @test isa(v1 +̃ s, LazyArray) | |
150 @test isa(v1 -̃ s, LazyArray) | |
151 @test isa(v1 *̃ s, LazyArray) | |
152 @test isa(v1 /̃ s, LazyArray) | |
153 @test isa(s +̃ v1, LazyArray) | |
154 @test isa(s -̃ v1, LazyArray) | |
155 @test isa(s *̃ v1, LazyArray) | |
156 @test isa(s /̃ v1, LazyArray) | |
157 for i ∈ eachindex(v1) | |
158 @test (v1 +̃ v2)[i] == r_add_v[i] | |
159 @test (v1 -̃ v2)[i] == r_sub_v[i] | |
160 @test (v1 *̃ v2)[i] == r_times_v[i] | |
161 @test (v1 /̃ v2)[i] == r_div_v[i] | |
162 @test (v1 +̃ s)[i] == r_add_s[i] | |
163 @test (v1 -̃ s)[i] == r_sub_s[i] | |
164 @test (v1 *̃ s)[i] == r_times_s[i] | |
165 @test (v1 /̃ s)[i] == r_div_s[i] | |
166 @test (s +̃ v1)[i] == r_add_s[i] | |
167 @test (s -̃ v1)[i] == -r_sub_s[i] | |
168 @test (s *̃ v1)[i] == r_times_s[i] | |
169 @test (s /̃ v1)[i] == 1/r_div_s[i] | |
170 end | |
171 @test_throws BoundsError (v1 +̃ v2)[4] | |
172 v2 = [1., 2, 3, 4] | |
173 # Test that size of arrays is asserted when not specified inbounds | |
174 @test_throws DimensionMismatch v1 +̃ v2 | |
175 | |
176 # Test operations on LazyArray | |
177 v1 = DummyArray([1, 2.3, 4]) | |
178 v2 = [1., 2, 3] | |
179 @test isa(v1 + v2, LazyArray) | |
180 @test isa(v2 + v1, LazyArray) | |
181 @test isa(v1 - v2, LazyArray) | |
182 @test isa(v2 - v1, LazyArray) | |
183 for i ∈ eachindex(v2) | |
184 @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i] | |
185 @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i] | |
186 end | |
187 @test_throws BoundsError (v1 + v2)[4] | |
188 v2 = [1., 2, 3, 4] | |
189 # Test that size of arrays is asserted when not specified inbounds | |
190 @test_throws DimensionMismatch v1 + v2 | |
191 end |