Mercurial > repos > public > sbplib_julia
diff test/testDiffOps.jl @ 333:01b851161018 refactor/combine_to_one_package
Start converting to one package by moving all the files to their correct location
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 13:06:02 +0200 |
parents | DiffOps/test/runtests.jl@e21dcda55163 |
children | f4e3e71a4ff4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/testDiffOps.jl Fri Sep 25 13:06:02 2020 +0200 @@ -0,0 +1,270 @@ +using Test +using Sbplib +using DiffOps +using Grids +using SbpOperators +using RegionIndices +using LazyTensors + +@testset "Laplace2D" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + Lx = 3.5 + Ly = 7.2 + g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly)) + L = Laplace(g, 1., op) + H = quadrature(L) + + f0(x::Float64,y::Float64) = 2. + f1(x::Float64,y::Float64) = x+y + f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 + f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 + f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 + f5(x::Float64,y::Float64) = sin(x) + cos(y) + f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) + + v0 = evalOn(g,f0) + v1 = evalOn(g,f1) + v2 = evalOn(g,f2) + v3 = evalOn(g,f3) + v4 = evalOn(g,f4) + v5 = evalOn(g,f5) + v5ₓₓ = evalOn(g,f5ₓₓ) + + @test L isa TensorOperator{T,2} where T + @test L' isa TensorMapping{T,2,2} where T + + # TODO: Should perhaps set tolerance level for isapporx instead? + # Are these tolerance levels resonable or should tests be constructed + # differently? + equalitytol = 0.5*1e-10 + accuracytol = 0.5*1e-3 + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for v - monomial up to order 3. + # Exact differentiation is measured point-wise. For other grid functions + # the error is measured in the H-norm. + @test all(abs.(collect(L*v0)) .<= equalitytol) + @test all(abs.(collect(L*v1)) .<= equalitytol) + @test all(collect(L*v2) .≈ v0) # Seems to be more accurate + @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) + e4 = collect(L*v4) - v2 + e5 = collect(L*v5) - v5ₓₓ + @test sum(collect(H*e4.^2)) <= accuracytol + @test sum(collect(H*e5.^2)) <= accuracytol +end + +@testset "Quadrature" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + Lx = 2.3 + Ly = 5.2 + g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + H = Quadrature(op,g) + v = ones(Float64, size(g)) + + @test H isa TensorOperator{T,2} where T + @test H' isa TensorMapping{T,2,2} where T + @test sum(collect(H*v)) ≈ (Lx*Ly) + @test collect(H*v) == collect(H'*v) +end + +@testset "InverseQuadrature" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + Lx = 7.3 + Ly = 8.2 + g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + H = Quadrature(op,g) + Hinv = InverseQuadrature(op,g) + v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) + + @test Hinv isa TensorOperator{T,2} where T + @test Hinv' isa TensorMapping{T,2,2} where T + @test collect(Hinv*H*v) ≈ v + @test collect(Hinv*v) == collect(Hinv'*v) +end + +@testset "BoundaryValue" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) + + e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) + e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) + e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) + e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) + + v = zeros(Float64, 4, 5) + v[:,5] = [1, 2, 3,4] + v[:,4] = [1, 2, 3,4] + v[:,3] = [4, 5, 6, 7] + v[:,2] = [7, 8, 9, 10] + v[:,1] = [10, 11, 12, 13] + + @test e_w isa TensorMapping{T,2,1} where T + @test e_w' isa TensorMapping{T,1,2} where T + + @test domain_size(e_w, (3,2)) == (2,) + @test domain_size(e_e, (3,2)) == (2,) + @test domain_size(e_s, (3,2)) == (3,) + @test domain_size(e_n, (3,2)) == (3,) + + @test size(e_w'*v) == (5,) + @test size(e_e'*v) == (5,) + @test size(e_s'*v) == (4,) + @test size(e_n'*v) == (4,) + + @test collect(e_w'*v) == [10,7,4,1.0,1] + @test collect(e_e'*v) == [13,10,7,4,4.0] + @test collect(e_s'*v) == [10,11,12,13.0] + @test collect(e_n'*v) == [1,2,3,4.0] + + g_x = [1,2,3,4.0] + g_y = [5,4,3,2,1.0] + + G_w = zeros(Float64, (4,5)) + G_w[1,:] = g_y + + G_e = zeros(Float64, (4,5)) + G_e[4,:] = g_y + + G_s = zeros(Float64, (4,5)) + G_s[:,1] = g_x + + G_n = zeros(Float64, (4,5)) + G_n[:,5] = g_x + + @test size(e_w*g_y) == (UnknownDim,5) + @test size(e_e*g_y) == (UnknownDim,5) + @test size(e_s*g_x) == (4,UnknownDim) + @test size(e_n*g_x) == (4,UnknownDim) + + # These tests should be moved to where they are possible (i.e we know what the grid should be) + @test_broken collect(e_w*g_y) == G_w + @test_broken collect(e_e*g_y) == G_e + @test_broken collect(e_s*g_x) == G_s + @test_broken collect(e_n*g_x) == G_n +end + +@testset "NormalDerivative" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) + + d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) + d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) + d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) + d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) + + + v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = evalOn(g, (x,y)-> 2*x + y) + v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) + + @test d_w isa TensorMapping{T,2,1} where T + @test d_w' isa TensorMapping{T,1,2} where T + + @test domain_size(d_w, (3,2)) == (2,) + @test domain_size(d_e, (3,2)) == (2,) + @test domain_size(d_s, (3,2)) == (3,) + @test domain_size(d_n, (3,2)) == (3,) + + @test size(d_w'*v) == (6,) + @test size(d_e'*v) == (6,) + @test size(d_s'*v) == (5,) + @test size(d_n'*v) == (5,) + + @test collect(d_w'*v) ≈ v∂x[1,:] + @test collect(d_e'*v) ≈ v∂x[5,:] + @test collect(d_s'*v) ≈ v∂y[:,1] + @test collect(d_n'*v) ≈ v∂y[:,6] + + + d_x_l = zeros(Float64, 5) + d_x_u = zeros(Float64, 5) + for i ∈ eachindex(d_x_l) + d_x_l[i] = op.dClosure[i-1] + d_x_u[i] = -op.dClosure[length(d_x_u)-i] + end + + d_y_l = zeros(Float64, 6) + d_y_u = zeros(Float64, 6) + for i ∈ eachindex(d_y_l) + d_y_l[i] = op.dClosure[i-1] + d_y_u[i] = -op.dClosure[length(d_y_u)-i] + end + + function prod_matrix(x,y) + G = zeros(Float64, length(x), length(y)) + for I ∈ CartesianIndices(G) + G[I] = x[I[1]]*y[I[2]] + end + + return G + end + + g_x = [1,2,3,4.0,5] + g_y = [5,4,3,2,1.0,11] + + G_w = prod_matrix(d_x_l, g_y) + G_e = prod_matrix(d_x_u, g_y) + G_s = prod_matrix(g_x, d_y_l) + G_n = prod_matrix(g_x, d_y_u) + + + @test size(d_w*g_y) == (UnknownDim,6) + @test size(d_e*g_y) == (UnknownDim,6) + @test size(d_s*g_x) == (5,UnknownDim) + @test size(d_n*g_x) == (5,UnknownDim) + + # These tests should be moved to where they are possible (i.e we know what the grid should be) + @test_broken collect(d_w*g_y) ≈ G_w + @test_broken collect(d_e*g_y) ≈ G_e + @test_broken collect(d_s*g_x) ≈ G_s + @test_broken collect(d_n*g_x) ≈ G_n +end + +@testset "BoundaryQuadrature" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) + + H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) + H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) + H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) + H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) + + v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) + + function get_quadrature(N) + qc = op.quadratureClosure + q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) + @assert length(q) == N + return q + end + + v_w = v[1,:] + v_e = v[10,:] + v_s = v[:,1] + v_n = v[:,11] + + q_x = spacing(g)[1].*get_quadrature(10) + q_y = spacing(g)[2].*get_quadrature(11) + + @test H_w isa TensorOperator{T,1} where T + + @test domain_size(H_w, (3,)) == (3,) + @test domain_size(H_n, (3,)) == (3,) + + @test range_size(H_w, (3,)) == (3,) + @test range_size(H_n, (3,)) == (3,) + + @test size(H_w*v_w) == (11,) + @test size(H_e*v_e) == (11,) + @test size(H_s*v_s) == (10,) + @test size(H_n*v_n) == (10,) + + @test collect(H_w*v_w) ≈ q_y.*v_w + @test collect(H_e*v_e) ≈ q_y.*v_e + @test collect(H_s*v_s) ≈ q_x.*v_s + @test collect(H_n*v_n) ≈ q_x.*v_n + + @test collect(H_w'*v_w) == collect(H_w'*v_w) + @test collect(H_e'*v_e) == collect(H_e'*v_e) + @test collect(H_s'*v_s) == collect(H_s'*v_s) + @test collect(H_n'*v_n) == collect(H_n'*v_n) +end