diff test/testDiffOps.jl @ 333:01b851161018 refactor/combine_to_one_package

Start converting to one package by moving all the files to their correct location
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 25 Sep 2020 13:06:02 +0200
parents DiffOps/test/runtests.jl@e21dcda55163
children f4e3e71a4ff4
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/testDiffOps.jl	Fri Sep 25 13:06:02 2020 +0200
@@ -0,0 +1,270 @@
+using Test
+using Sbplib
+using DiffOps
+using Grids
+using SbpOperators
+using RegionIndices
+using LazyTensors
+
+@testset "Laplace2D" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    Lx = 3.5
+    Ly = 7.2
+    g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly))
+    L = Laplace(g, 1., op)
+    H = quadrature(L)
+
+    f0(x::Float64,y::Float64) = 2.
+    f1(x::Float64,y::Float64) = x+y
+    f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2
+    f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3
+    f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4
+    f5(x::Float64,y::Float64) = sin(x) + cos(y)
+    f5ₓₓ(x::Float64,y::Float64) = -f5(x,y)
+
+    v0 = evalOn(g,f0)
+    v1 = evalOn(g,f1)
+    v2 = evalOn(g,f2)
+    v3 = evalOn(g,f3)
+    v4 = evalOn(g,f4)
+    v5 = evalOn(g,f5)
+    v5ₓₓ = evalOn(g,f5ₓₓ)
+
+    @test L isa TensorOperator{T,2} where T
+    @test L' isa TensorMapping{T,2,2} where T
+
+    # TODO: Should perhaps set tolerance level for isapporx instead?
+    #       Are these tolerance levels resonable or should tests be constructed
+    #       differently?
+    equalitytol = 0.5*1e-10
+    accuracytol = 0.5*1e-3
+    # 4th order interior stencil, 2nd order boundary stencil,
+    # implies that L*v should be exact for v - monomial up to order 3.
+    # Exact differentiation is measured point-wise. For other grid functions
+    # the error is measured in the H-norm.
+    @test all(abs.(collect(L*v0)) .<= equalitytol)
+    @test all(abs.(collect(L*v1)) .<= equalitytol)
+    @test all(collect(L*v2) .≈ v0) # Seems to be more accurate
+    @test all(abs.((collect(L*v3) - v1)) .<= equalitytol)
+    e4 = collect(L*v4) - v2
+    e5 = collect(L*v5) - v5ₓₓ
+    @test sum(collect(H*e4.^2)) <= accuracytol
+    @test sum(collect(H*e5.^2)) <= accuracytol
+end
+
+@testset "Quadrature" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    Lx = 2.3
+    Ly = 5.2
+    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+    H = Quadrature(op,g)
+    v = ones(Float64, size(g))
+
+    @test H isa TensorOperator{T,2} where T
+    @test H' isa TensorMapping{T,2,2} where T
+    @test sum(collect(H*v)) ≈ (Lx*Ly)
+    @test collect(H*v) == collect(H'*v)
+end
+
+@testset "InverseQuadrature" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    Lx = 7.3
+    Ly = 8.2
+    g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+    H = Quadrature(op,g)
+    Hinv = InverseQuadrature(op,g)
+    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
+
+    @test Hinv isa TensorOperator{T,2} where T
+    @test Hinv' isa TensorMapping{T,2,2} where T
+    @test collect(Hinv*H*v)  ≈ v
+    @test collect(Hinv*v) == collect(Hinv'*v)
+end
+
+@testset "BoundaryValue" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))
+
+    e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}())
+    e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}())
+    e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}())
+    e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}())
+
+    v = zeros(Float64, 4, 5)
+    v[:,5] = [1, 2, 3,4]
+    v[:,4] = [1, 2, 3,4]
+    v[:,3] = [4, 5, 6, 7]
+    v[:,2] = [7, 8, 9, 10]
+    v[:,1] = [10, 11, 12, 13]
+
+    @test e_w  isa TensorMapping{T,2,1} where T
+    @test e_w' isa TensorMapping{T,1,2} where T
+
+    @test domain_size(e_w, (3,2)) == (2,)
+    @test domain_size(e_e, (3,2)) == (2,)
+    @test domain_size(e_s, (3,2)) == (3,)
+    @test domain_size(e_n, (3,2)) == (3,)
+
+    @test size(e_w'*v) == (5,)
+    @test size(e_e'*v) == (5,)
+    @test size(e_s'*v) == (4,)
+    @test size(e_n'*v) == (4,)
+
+    @test collect(e_w'*v) == [10,7,4,1.0,1]
+    @test collect(e_e'*v) == [13,10,7,4,4.0]
+    @test collect(e_s'*v) == [10,11,12,13.0]
+    @test collect(e_n'*v) == [1,2,3,4.0]
+
+    g_x = [1,2,3,4.0]
+    g_y = [5,4,3,2,1.0]
+
+    G_w = zeros(Float64, (4,5))
+    G_w[1,:] = g_y
+
+    G_e = zeros(Float64, (4,5))
+    G_e[4,:] = g_y
+
+    G_s = zeros(Float64, (4,5))
+    G_s[:,1] = g_x
+
+    G_n = zeros(Float64, (4,5))
+    G_n[:,5] = g_x
+
+    @test size(e_w*g_y) == (UnknownDim,5)
+    @test size(e_e*g_y) == (UnknownDim,5)
+    @test size(e_s*g_x) == (4,UnknownDim)
+    @test size(e_n*g_x) == (4,UnknownDim)
+
+    # These tests should be moved to where they are possible (i.e we know what the grid should be)
+    @test_broken collect(e_w*g_y) == G_w
+    @test_broken collect(e_e*g_y) == G_e
+    @test_broken collect(e_s*g_x) == G_s
+    @test_broken collect(e_n*g_x) == G_n
+end
+
+@testset "NormalDerivative" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
+
+    d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
+    d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
+    d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
+    d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}())
+
+
+    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
+    v∂x = evalOn(g, (x,y)-> 2*x + y)
+    v∂y = evalOn(g, (x,y)-> 2*(y-1) + x)
+
+    @test d_w  isa TensorMapping{T,2,1} where T
+    @test d_w' isa TensorMapping{T,1,2} where T
+
+    @test domain_size(d_w, (3,2)) == (2,)
+    @test domain_size(d_e, (3,2)) == (2,)
+    @test domain_size(d_s, (3,2)) == (3,)
+    @test domain_size(d_n, (3,2)) == (3,)
+
+    @test size(d_w'*v) == (6,)
+    @test size(d_e'*v) == (6,)
+    @test size(d_s'*v) == (5,)
+    @test size(d_n'*v) == (5,)
+
+    @test collect(d_w'*v) ≈ v∂x[1,:]
+    @test collect(d_e'*v) ≈ v∂x[5,:]
+    @test collect(d_s'*v) ≈ v∂y[:,1]
+    @test collect(d_n'*v) ≈ v∂y[:,6]
+
+
+    d_x_l = zeros(Float64, 5)
+    d_x_u = zeros(Float64, 5)
+    for i ∈ eachindex(d_x_l)
+        d_x_l[i] = op.dClosure[i-1]
+        d_x_u[i] = -op.dClosure[length(d_x_u)-i]
+    end
+
+    d_y_l = zeros(Float64, 6)
+    d_y_u = zeros(Float64, 6)
+    for i ∈ eachindex(d_y_l)
+        d_y_l[i] = op.dClosure[i-1]
+        d_y_u[i] = -op.dClosure[length(d_y_u)-i]
+    end
+
+    function prod_matrix(x,y)
+        G = zeros(Float64, length(x), length(y))
+        for I ∈ CartesianIndices(G)
+            G[I] = x[I[1]]*y[I[2]]
+        end
+
+        return G
+    end
+
+    g_x = [1,2,3,4.0,5]
+    g_y = [5,4,3,2,1.0,11]
+
+    G_w = prod_matrix(d_x_l, g_y)
+    G_e = prod_matrix(d_x_u, g_y)
+    G_s = prod_matrix(g_x, d_y_l)
+    G_n = prod_matrix(g_x, d_y_u)
+
+
+    @test size(d_w*g_y) == (UnknownDim,6)
+    @test size(d_e*g_y) == (UnknownDim,6)
+    @test size(d_s*g_x) == (5,UnknownDim)
+    @test size(d_n*g_x) == (5,UnknownDim)
+
+    # These tests should be moved to where they are possible (i.e we know what the grid should be)
+    @test_broken collect(d_w*g_y) ≈ G_w
+    @test_broken collect(d_e*g_y) ≈ G_e
+    @test_broken collect(d_s*g_x) ≈ G_s
+    @test_broken collect(d_n*g_x) ≈ G_n
+end
+
+@testset "BoundaryQuadrature" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))
+
+    H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
+    H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
+    H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())
+    H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}())
+
+    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
+
+    function get_quadrature(N)
+        qc = op.quadratureClosure
+        q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...)
+        @assert length(q) == N
+        return q
+    end
+
+    v_w = v[1,:]
+    v_e = v[10,:]
+    v_s = v[:,1]
+    v_n = v[:,11]
+
+    q_x = spacing(g)[1].*get_quadrature(10)
+    q_y = spacing(g)[2].*get_quadrature(11)
+
+    @test H_w isa TensorOperator{T,1} where T
+
+    @test domain_size(H_w, (3,)) == (3,)
+    @test domain_size(H_n, (3,)) == (3,)
+
+    @test range_size(H_w, (3,)) == (3,)
+    @test range_size(H_n, (3,)) == (3,)
+
+    @test size(H_w*v_w) == (11,)
+    @test size(H_e*v_e) == (11,)
+    @test size(H_s*v_s) == (10,)
+    @test size(H_n*v_n) == (10,)
+
+    @test collect(H_w*v_w) ≈ q_y.*v_w
+    @test collect(H_e*v_e) ≈ q_y.*v_e
+    @test collect(H_s*v_s) ≈ q_x.*v_s
+    @test collect(H_n*v_n) ≈ q_x.*v_n
+
+    @test collect(H_w'*v_w) == collect(H_w'*v_w)
+    @test collect(H_e'*v_e) == collect(H_e'*v_e)
+    @test collect(H_s'*v_s) == collect(H_s'*v_s)
+    @test collect(H_n'*v_n) == collect(H_n'*v_n)
+end