comparison test/testDiffOps.jl @ 333:01b851161018 refactor/combine_to_one_package

Start converting to one package by moving all the files to their correct location
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 25 Sep 2020 13:06:02 +0200
parents DiffOps/test/runtests.jl@e21dcda55163
children f4e3e71a4ff4
comparison
equal deleted inserted replaced
332:535f1bff4bcc 333:01b851161018
1 using Test
2 using Sbplib
3 using DiffOps
4 using Grids
5 using SbpOperators
6 using RegionIndices
7 using LazyTensors
8
9 @testset "Laplace2D" begin
10 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
11 Lx = 3.5
12 Ly = 7.2
13 g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly))
14 L = Laplace(g, 1., op)
15 H = quadrature(L)
16
17 f0(x::Float64,y::Float64) = 2.
18 f1(x::Float64,y::Float64) = x+y
19 f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2
20 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3
21 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4
22 f5(x::Float64,y::Float64) = sin(x) + cos(y)
23 f5ₓₓ(x::Float64,y::Float64) = -f5(x,y)
24
25 v0 = evalOn(g,f0)
26 v1 = evalOn(g,f1)
27 v2 = evalOn(g,f2)
28 v3 = evalOn(g,f3)
29 v4 = evalOn(g,f4)
30 v5 = evalOn(g,f5)
31 v5ₓₓ = evalOn(g,f5ₓₓ)
32
33 @test L isa TensorOperator{T,2} where T
34 @test L' isa TensorMapping{T,2,2} where T
35
36 # TODO: Should perhaps set tolerance level for isapporx instead?
37 # Are these tolerance levels resonable or should tests be constructed
38 # differently?
39 equalitytol = 0.5*1e-10
40 accuracytol = 0.5*1e-3
41 # 4th order interior stencil, 2nd order boundary stencil,
42 # implies that L*v should be exact for v - monomial up to order 3.
43 # Exact differentiation is measured point-wise. For other grid functions
44 # the error is measured in the H-norm.
45 @test all(abs.(collect(L*v0)) .<= equalitytol)
46 @test all(abs.(collect(L*v1)) .<= equalitytol)
47 @test all(collect(L*v2) .≈ v0) # Seems to be more accurate
48 @test all(abs.((collect(L*v3) - v1)) .<= equalitytol)
49 e4 = collect(L*v4) - v2
50 e5 = collect(L*v5) - v5ₓₓ
51 @test sum(collect(H*e4.^2)) <= accuracytol
52 @test sum(collect(H*e5.^2)) <= accuracytol
53 end
54
55 @testset "Quadrature" begin
56 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
57 Lx = 2.3
58 Ly = 5.2
59 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
60 H = Quadrature(op,g)
61 v = ones(Float64, size(g))
62
63 @test H isa TensorOperator{T,2} where T
64 @test H' isa TensorMapping{T,2,2} where T
65 @test sum(collect(H*v)) ≈ (Lx*Ly)
66 @test collect(H*v) == collect(H'*v)
67 end
68
69 @testset "InverseQuadrature" begin
70 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
71 Lx = 7.3
72 Ly = 8.2
73 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
74 H = Quadrature(op,g)
75 Hinv = InverseQuadrature(op,g)
76 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
77
78 @test Hinv isa TensorOperator{T,2} where T
79 @test Hinv' isa TensorMapping{T,2,2} where T
80 @test collect(Hinv*H*v) ≈ v
81 @test collect(Hinv*v) == collect(Hinv'*v)
82 end
83
84 @testset "BoundaryValue" begin
85 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
86 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))
87
88 e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}())
89 e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}())
90 e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}())
91 e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}())
92
93 v = zeros(Float64, 4, 5)
94 v[:,5] = [1, 2, 3,4]
95 v[:,4] = [1, 2, 3,4]
96 v[:,3] = [4, 5, 6, 7]
97 v[:,2] = [7, 8, 9, 10]
98 v[:,1] = [10, 11, 12, 13]
99
100 @test e_w isa TensorMapping{T,2,1} where T
101 @test e_w' isa TensorMapping{T,1,2} where T
102
103 @test domain_size(e_w, (3,2)) == (2,)
104 @test domain_size(e_e, (3,2)) == (2,)
105 @test domain_size(e_s, (3,2)) == (3,)
106 @test domain_size(e_n, (3,2)) == (3,)
107
108 @test size(e_w'*v) == (5,)
109 @test size(e_e'*v) == (5,)
110 @test size(e_s'*v) == (4,)
111 @test size(e_n'*v) == (4,)
112
113 @test collect(e_w'*v) == [10,7,4,1.0,1]
114 @test collect(e_e'*v) == [13,10,7,4,4.0]
115 @test collect(e_s'*v) == [10,11,12,13.0]
116 @test collect(e_n'*v) == [1,2,3,4.0]
117
118 g_x = [1,2,3,4.0]
119 g_y = [5,4,3,2,1.0]
120
121 G_w = zeros(Float64, (4,5))
122 G_w[1,:] = g_y
123
124 G_e = zeros(Float64, (4,5))
125 G_e[4,:] = g_y
126
127 G_s = zeros(Float64, (4,5))
128 G_s[:,1] = g_x
129
130 G_n = zeros(Float64, (4,5))
131 G_n[:,5] = g_x
132
133 @test size(e_w*g_y) == (UnknownDim,5)
134 @test size(e_e*g_y) == (UnknownDim,5)
135 @test size(e_s*g_x) == (4,UnknownDim)
136 @test size(e_n*g_x) == (4,UnknownDim)
137
138 # These tests should be moved to where they are possible (i.e we know what the grid should be)
139 @test_broken collect(e_w*g_y) == G_w
140 @test_broken collect(e_e*g_y) == G_e
141 @test_broken collect(e_s*g_x) == G_s
142 @test_broken collect(e_n*g_x) == G_n
143 end
144
145 @testset "NormalDerivative" begin
146 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
147 g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
148
149 d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
150 d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
151 d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
152 d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}())
153
154
155 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
156 v∂x = evalOn(g, (x,y)-> 2*x + y)
157 v∂y = evalOn(g, (x,y)-> 2*(y-1) + x)
158
159 @test d_w isa TensorMapping{T,2,1} where T
160 @test d_w' isa TensorMapping{T,1,2} where T
161
162 @test domain_size(d_w, (3,2)) == (2,)
163 @test domain_size(d_e, (3,2)) == (2,)
164 @test domain_size(d_s, (3,2)) == (3,)
165 @test domain_size(d_n, (3,2)) == (3,)
166
167 @test size(d_w'*v) == (6,)
168 @test size(d_e'*v) == (6,)
169 @test size(d_s'*v) == (5,)
170 @test size(d_n'*v) == (5,)
171
172 @test collect(d_w'*v) ≈ v∂x[1,:]
173 @test collect(d_e'*v) ≈ v∂x[5,:]
174 @test collect(d_s'*v) ≈ v∂y[:,1]
175 @test collect(d_n'*v) ≈ v∂y[:,6]
176
177
178 d_x_l = zeros(Float64, 5)
179 d_x_u = zeros(Float64, 5)
180 for i ∈ eachindex(d_x_l)
181 d_x_l[i] = op.dClosure[i-1]
182 d_x_u[i] = -op.dClosure[length(d_x_u)-i]
183 end
184
185 d_y_l = zeros(Float64, 6)
186 d_y_u = zeros(Float64, 6)
187 for i ∈ eachindex(d_y_l)
188 d_y_l[i] = op.dClosure[i-1]
189 d_y_u[i] = -op.dClosure[length(d_y_u)-i]
190 end
191
192 function prod_matrix(x,y)
193 G = zeros(Float64, length(x), length(y))
194 for I ∈ CartesianIndices(G)
195 G[I] = x[I[1]]*y[I[2]]
196 end
197
198 return G
199 end
200
201 g_x = [1,2,3,4.0,5]
202 g_y = [5,4,3,2,1.0,11]
203
204 G_w = prod_matrix(d_x_l, g_y)
205 G_e = prod_matrix(d_x_u, g_y)
206 G_s = prod_matrix(g_x, d_y_l)
207 G_n = prod_matrix(g_x, d_y_u)
208
209
210 @test size(d_w*g_y) == (UnknownDim,6)
211 @test size(d_e*g_y) == (UnknownDim,6)
212 @test size(d_s*g_x) == (5,UnknownDim)
213 @test size(d_n*g_x) == (5,UnknownDim)
214
215 # These tests should be moved to where they are possible (i.e we know what the grid should be)
216 @test_broken collect(d_w*g_y) ≈ G_w
217 @test_broken collect(d_e*g_y) ≈ G_e
218 @test_broken collect(d_s*g_x) ≈ G_s
219 @test_broken collect(d_n*g_x) ≈ G_n
220 end
221
222 @testset "BoundaryQuadrature" begin
223 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
224 g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))
225
226 H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
227 H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
228 H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())
229 H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}())
230
231 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
232
233 function get_quadrature(N)
234 qc = op.quadratureClosure
235 q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...)
236 @assert length(q) == N
237 return q
238 end
239
240 v_w = v[1,:]
241 v_e = v[10,:]
242 v_s = v[:,1]
243 v_n = v[:,11]
244
245 q_x = spacing(g)[1].*get_quadrature(10)
246 q_y = spacing(g)[2].*get_quadrature(11)
247
248 @test H_w isa TensorOperator{T,1} where T
249
250 @test domain_size(H_w, (3,)) == (3,)
251 @test domain_size(H_n, (3,)) == (3,)
252
253 @test range_size(H_w, (3,)) == (3,)
254 @test range_size(H_n, (3,)) == (3,)
255
256 @test size(H_w*v_w) == (11,)
257 @test size(H_e*v_e) == (11,)
258 @test size(H_s*v_s) == (10,)
259 @test size(H_n*v_n) == (10,)
260
261 @test collect(H_w*v_w) ≈ q_y.*v_w
262 @test collect(H_e*v_e) ≈ q_y.*v_e
263 @test collect(H_s*v_s) ≈ q_x.*v_s
264 @test collect(H_n*v_n) ≈ q_x.*v_n
265
266 @test collect(H_w'*v_w) == collect(H_w'*v_w)
267 @test collect(H_e'*v_e) == collect(H_e'*v_e)
268 @test collect(H_s'*v_s) == collect(H_s'*v_s)
269 @test collect(H_n'*v_n) == collect(H_n'*v_n)
270 end