Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/laplace/laplace.jl @ 333:01b851161018 refactor/combine_to_one_package
Start converting to one package by moving all the files to their correct location
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 13:06:02 +0200 |
parents | SbpOperators/src/laplace/laplace.jl@9cc5d1498b2d |
children | 0844069ab5ff |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/laplace/laplace.jl Fri Sep 25 13:06:02 2020 +0200 @@ -0,0 +1,138 @@ +export Laplace +""" + Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + +Implements the Laplace operator `L` in Dim dimensions as a tensor operator +The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative +tensor operators. +""" +#export quadrature, inverse_quadrature, boundary_quadrature, boundary_value, normal_derivative +struct Laplace{Dim,T,N,M,K} <: TensorOperator{T,Dim} + D2::NTuple{Dim,SecondDerivative{T,N,M,K}} + #TODO: Write a good constructor +end + +LazyTensors.domain_size(L::Laplace{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size + +function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} + error("not implemented") +end + +# u = L*v +function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::Index) where T + @inbounds u = LazyTensors.apply(L.D2[1],v,I) + return u +end + +function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T + # 2nd x-derivative + @inbounds vx = view(v, :, Int(J)) + @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , I) + + # 2nd y-derivative + @inbounds vy = view(v, Int(I), :) + @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , J) + + return uᵢ +end + +LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} = LazyTensors.apply(L, v, I...) + +# quadrature(L::Laplace) = Quadrature(L.op, L.grid) +# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) +# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) +# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) +# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) +# export NormalDerivative +# """ +# NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} +# +# Implements the boundary operator `d` as a TensorMapping +# """ +# struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} +# op::D2{T,N,M,K} +# grid::EquidistantGrid{2} +# bId::CartesianBoundary +# end +# +# # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# # Can we give special treatment to TensorMappings that go to a higher dim? +# function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer}) +# if dim(e.bId) == 1 +# return (UnknownDim, domain_size[1]) +# elseif dim(e.bId) == 2 +# return (domain_size[1], UnknownDim) +# end +# end +# LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],) +# +# # TODO: Not type stable D:< +# # TODO: Make this independent of dimension +# function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T +# i = I[dim(d.bId)] +# j = I[3-dim(d.bId)] +# N_i = size(d.grid)[dim(d.bId)] +# h_inv = inverse_spacing(d.grid)[dim(d.bId)] +# return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId)) +# end +# +# function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T +# u = selectdim(v,3-dim(d.bId),Int(I[1])) +# return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId)) +# end +# +# """ +# BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} +# +# Implements the boundary operator `q` as a TensorOperator +# """ +# export BoundaryQuadrature +# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} +# op::D2{T,N,M,K} +# grid::EquidistantGrid{2} +# bId::CartesianBoundary +# end +# +# +# # TODO: Make this independent of dimension +# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T +# h = spacing(q.grid)[3-dim(q.bId)] +# N = size(v) +# return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) +# end +# +# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) +# +# +# +# +# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end +# +# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} +# e = boundary_value(L, Bid()) +# d = normal_derivative(L, Bid()) +# Hᵧ = boundary_quadrature(L, Bid()) +# H⁻¹ = inverse_quadrature(L) +# return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] +# end +# +# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition +# tau::Float64 +# end +# +# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} +# e = boundary_value(L, Bid()) +# d = normal_derivative(L, Bid()) +# Hᵧ = boundary_quadrature(L, Bid()) +# H⁻¹ = inverse_quadrature(L) +# return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] +# # Need to handle scalar multiplication and addition of TensorMapping +# end + +# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D + # return apply(s.L, v, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) +# end