comparison src/SbpOperators/laplace/laplace.jl @ 333:01b851161018 refactor/combine_to_one_package

Start converting to one package by moving all the files to their correct location
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 25 Sep 2020 13:06:02 +0200
parents SbpOperators/src/laplace/laplace.jl@9cc5d1498b2d
children 0844069ab5ff
comparison
equal deleted inserted replaced
332:535f1bff4bcc 333:01b851161018
1 export Laplace
2 """
3 Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim}
4
5 Implements the Laplace operator `L` in Dim dimensions as a tensor operator
6 The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative
7 tensor operators.
8 """
9 #export quadrature, inverse_quadrature, boundary_quadrature, boundary_value, normal_derivative
10 struct Laplace{Dim,T,N,M,K} <: TensorOperator{T,Dim}
11 D2::NTuple{Dim,SecondDerivative{T,N,M,K}}
12 #TODO: Write a good constructor
13 end
14
15 LazyTensors.domain_size(L::Laplace{Dim}, range_size::NTuple{Dim,Integer}) where {Dim} = range_size
16
17 function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
18 error("not implemented")
19 end
20
21 # u = L*v
22 function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::Index) where T
23 @inbounds u = LazyTensors.apply(L.D2[1],v,I)
24 return u
25 end
26
27 function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
28 # 2nd x-derivative
29 @inbounds vx = view(v, :, Int(J))
30 @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , I)
31
32 # 2nd y-derivative
33 @inbounds vy = view(v, Int(I), :)
34 @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , J)
35
36 return uᵢ
37 end
38
39 LazyTensors.apply_transpose(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} = LazyTensors.apply(L, v, I...)
40
41 # quadrature(L::Laplace) = Quadrature(L.op, L.grid)
42 # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
43 # boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
44 # normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
45 # boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
46 # export NormalDerivative
47 # """
48 # NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
49 #
50 # Implements the boundary operator `d` as a TensorMapping
51 # """
52 # struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
53 # op::D2{T,N,M,K}
54 # grid::EquidistantGrid{2}
55 # bId::CartesianBoundary
56 # end
57 #
58 # # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
59 # # Can we give special treatment to TensorMappings that go to a higher dim?
60 # function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer})
61 # if dim(e.bId) == 1
62 # return (UnknownDim, domain_size[1])
63 # elseif dim(e.bId) == 2
64 # return (domain_size[1], UnknownDim)
65 # end
66 # end
67 # LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],)
68 #
69 # # TODO: Not type stable D:<
70 # # TODO: Make this independent of dimension
71 # function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
72 # i = I[dim(d.bId)]
73 # j = I[3-dim(d.bId)]
74 # N_i = size(d.grid)[dim(d.bId)]
75 # h_inv = inverse_spacing(d.grid)[dim(d.bId)]
76 # return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId))
77 # end
78 #
79 # function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
80 # u = selectdim(v,3-dim(d.bId),Int(I[1]))
81 # return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId))
82 # end
83 #
84 # """
85 # BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
86 #
87 # Implements the boundary operator `q` as a TensorOperator
88 # """
89 # export BoundaryQuadrature
90 # struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
91 # op::D2{T,N,M,K}
92 # grid::EquidistantGrid{2}
93 # bId::CartesianBoundary
94 # end
95 #
96 #
97 # # TODO: Make this independent of dimension
98 # function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
99 # h = spacing(q.grid)[3-dim(q.bId)]
100 # N = size(v)
101 # return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
102 # end
103 #
104 # LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
105 #
106 #
107 #
108 #
109 # struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
110 #
111 # function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
112 # e = boundary_value(L, Bid())
113 # d = normal_derivative(L, Bid())
114 # Hᵧ = boundary_quadrature(L, Bid())
115 # H⁻¹ = inverse_quadrature(L)
116 # return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
117 # end
118 #
119 # struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
120 # tau::Float64
121 # end
122 #
123 # function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
124 # e = boundary_value(L, Bid())
125 # d = normal_derivative(L, Bid())
126 # Hᵧ = boundary_quadrature(L, Bid())
127 # H⁻¹ = inverse_quadrature(L)
128 # return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
129 # # Need to handle scalar multiplication and addition of TensorMapping
130 # end
131
132 # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
133 # return apply(s.L, v, i) +
134 # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) +
135 # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) +
136 # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) +
137 # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i)
138 # end