Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1603:fca4a01d60c9 feature/boundary_conditions
Remove module BoundaryConditions, moving its content to SbpOperators
| author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
|---|---|
| date | Tue, 04 Jun 2024 16:46:14 -0700 |
| parents | 3e7438e2a033 |
| children | 93b86625fcfd |
comparison
equal
deleted
inserted
replaced
| 1602:3e7438e2a033 | 1603:fca4a01d60c9 |
|---|---|
| 60 The operators required to construct the SAT for imposing a Dirichlet condition. | 60 The operators required to construct the SAT for imposing a Dirichlet condition. |
| 61 `tuning` specifies the strength of the penalty. See | 61 `tuning` specifies the strength of the penalty. See |
| 62 | 62 |
| 63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). | 63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). |
| 64 """ | 64 """ |
| 65 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) | 65 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) |
| 66 id = boundary(bc) | 66 id = boundary(bc) |
| 67 set = Δ.stencil_set | 67 set = Δ.stencil_set |
| 68 H⁻¹ = inverse_inner_product(g,set) | 68 H⁻¹ = inverse_inner_product(g,set) |
| 69 Hᵧ = inner_product(boundary_grid(g, id), set) | 69 Hᵧ = inner_product(boundary_grid(g, id), set) |
| 70 e = boundary_restriction(g, set, id) | 70 e = boundary_restriction(g, set, id) |
| 80 The operators required to construct the SAT for imposing a Neumann condition | 80 The operators required to construct the SAT for imposing a Neumann condition |
| 81 | 81 |
| 82 | 82 |
| 83 See also: [`sat`,`NeumannCondition`](@ref). | 83 See also: [`sat`,`NeumannCondition`](@ref). |
| 84 """ | 84 """ |
| 85 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 85 function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
| 86 id = boundary(bc) | 86 id = boundary(bc) |
| 87 set = Δ.stencil_set | 87 set = Δ.stencil_set |
| 88 H⁻¹ = inverse_inner_product(g,set) | 88 H⁻¹ = inverse_inner_product(g,set) |
| 89 Hᵧ = inner_product(boundary_grid(g, id), set) | 89 Hᵧ = inner_product(boundary_grid(g, id), set) |
| 90 e = boundary_restriction(g, set, id) | 90 e = boundary_restriction(g, set, id) |
