Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1603:fca4a01d60c9 feature/boundary_conditions
Remove module BoundaryConditions, moving its content to SbpOperators
author | Vidar Stiernström <vidar.stiernstrom@gmail.com> |
---|---|
date | Tue, 04 Jun 2024 16:46:14 -0700 |
parents | 3e7438e2a033 |
children | 93b86625fcfd |
comparison
equal
deleted
inserted
replaced
1602:3e7438e2a033 | 1603:fca4a01d60c9 |
---|---|
60 The operators required to construct the SAT for imposing a Dirichlet condition. | 60 The operators required to construct the SAT for imposing a Dirichlet condition. |
61 `tuning` specifies the strength of the penalty. See | 61 `tuning` specifies the strength of the penalty. See |
62 | 62 |
63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). | 63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). |
64 """ | 64 """ |
65 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) | 65 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) |
66 id = boundary(bc) | 66 id = boundary(bc) |
67 set = Δ.stencil_set | 67 set = Δ.stencil_set |
68 H⁻¹ = inverse_inner_product(g,set) | 68 H⁻¹ = inverse_inner_product(g,set) |
69 Hᵧ = inner_product(boundary_grid(g, id), set) | 69 Hᵧ = inner_product(boundary_grid(g, id), set) |
70 e = boundary_restriction(g, set, id) | 70 e = boundary_restriction(g, set, id) |
80 The operators required to construct the SAT for imposing a Neumann condition | 80 The operators required to construct the SAT for imposing a Neumann condition |
81 | 81 |
82 | 82 |
83 See also: [`sat`,`NeumannCondition`](@ref). | 83 See also: [`sat`,`NeumannCondition`](@ref). |
84 """ | 84 """ |
85 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 85 function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
86 id = boundary(bc) | 86 id = boundary(bc) |
87 set = Δ.stencil_set | 87 set = Δ.stencil_set |
88 H⁻¹ = inverse_inner_product(g,set) | 88 H⁻¹ = inverse_inner_product(g,set) |
89 Hᵧ = inner_product(boundary_grid(g, id), set) | 89 Hᵧ = inner_product(boundary_grid(g, id), set) |
90 e = boundary_restriction(g, set, id) | 90 e = boundary_restriction(g, set, id) |