Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/quadrature/diagonal_quadrature.jl @ 634:fb5ac62563aa feature/volume_and_boundary_operators
Integrate feature/quadrature_as_outer_product into branch, before closing feature/quadrature_as_outer_product. (It is now obsolete apart from tests)
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 01 Jan 2021 16:39:57 +0100 |
parents | 04d7b4eb63ef |
children |
comparison
equal
deleted
inserted
replaced
632:bf8b66c596f7 | 634:fb5ac62563aa |
---|---|
1 """ | |
2 diagonal_quadrature(g,quadrature_closure) | |
3 | |
4 Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as | |
5 a `TensorMapping`. The one-dimensional operator is a `DiagonalQuadrature`, while | |
6 the multi-dimensional operator is the outer-product of the | |
7 one-dimensional operators in each coordinate direction. | |
8 """ | |
9 function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim | |
10 H = DiagonalQuadrature(restrict(g,1), quadrature_closure) | |
11 for i ∈ 2:Dim | |
12 H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure) | |
13 end | |
14 return H | |
15 end | |
16 export diagonal_quadrature | |
17 | |
18 """ | |
19 DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} | |
20 | |
21 Implements the one-dimensional diagonal quadrature operator as a `TensorMapping` | |
22 The quadrature is defined by the quadrature interval length `h`, the quadrature | |
23 closure weights `closure` and the number of quadrature intervals `size`. The | |
24 interior stencil has the weight 1. | |
25 """ | |
26 struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} | |
27 h::T | |
28 closure::NTuple{M,T} | |
29 size::Tuple{Int} | |
30 end | |
31 export DiagonalQuadrature | |
32 | |
33 """ | |
34 DiagonalQuadrature(g, quadrature_closure) | |
35 | |
36 Constructs the `DiagonalQuadrature` on the `EquidistantGrid` `g` with | |
37 closure given by `quadrature_closure`. | |
38 """ | |
39 function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) | |
40 return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) | |
41 end | |
42 | |
43 """ | |
44 range_size(H::DiagonalQuadrature) | |
45 | |
46 The size of an object in the range of `H` | |
47 """ | |
48 LazyTensors.range_size(H::DiagonalQuadrature) = H.size | |
49 | |
50 """ | |
51 domain_size(H::DiagonalQuadrature) | |
52 | |
53 The size of an object in the domain of `H` | |
54 """ | |
55 LazyTensors.domain_size(H::DiagonalQuadrature) = H.size | |
56 | |
57 """ | |
58 apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T | |
59 Implements the application `(H*v)[i]` an `Index{R}` where `R` is one of the regions | |
60 `Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first | |
61 be converted to an `Index{R}`. | |
62 """ | |
63 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T | |
64 return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] | |
65 end | |
66 | |
67 function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, i::Index{Upper}) where T | |
68 N = length(v); #TODO: Use dim_size here? | |
69 return @inbounds H.h*H.closure[N-Int(i)+1]*v[Int(i)] | |
70 end | |
71 | |
72 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T | |
73 return @inbounds H.h*v[Int(i)] | |
74 end | |
75 | |
76 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T | |
77 N = length(v); #TODO: Use dim_size here? | |
78 r = getregion(i, closure_size(H), N) | |
79 return LazyTensors.apply(H, v, Index(i, r)) | |
80 end | |
81 | |
82 """ | |
83 apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T | |
84 Implements the application (H'*v)[I]. The operator is self-adjoint. | |
85 """ | |
86 LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(H,v,i) | |
87 | |
88 """ | |
89 closure_size(H) | |
90 Returns the size of the closure stencil of a DiagonalQuadrature `H`. | |
91 """ | |
92 closure_size(H::DiagonalQuadrature{T,M}) where {T,M} = M |