Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 751:f94feb005e7d feature/laplace_opset
Change from Dict to StaticDict in Laplace
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 19 Mar 2021 16:56:58 +0100 |
parents | f88b2117dc69 |
children | fc83d672be36 |
comparison
equal
deleted
inserted
replaced
750:f88b2117dc69 | 751:f94feb005e7d |
---|---|
2 | 2 |
3 using Sbplib.SbpOperators | 3 using Sbplib.SbpOperators |
4 using Sbplib.Grids | 4 using Sbplib.Grids |
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 using Sbplib.RegionIndices | 6 using Sbplib.RegionIndices |
7 | 7 using Sbplib.StaticDicts |
8 """ | |
9 cmp_fields(s1,s2) | |
10 | |
11 Compares the fields of two structs s1, s2, using the == operator. | |
12 """ | |
13 function cmp_fields(s1::T,s2::T) where T | |
14 f = fieldnames(T) | |
15 return getfield.(Ref(s1),f) == getfield.(Ref(s2),f) | |
16 end | |
17 | 8 |
18 @testset "Laplace" begin | 9 @testset "Laplace" begin |
19 g_1D = EquidistantGrid(101, 0.0, 1.) | 10 g_1D = EquidistantGrid(101, 0.0, 1.) |
20 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) | 11 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) |
21 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 12 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
29 | 20 |
30 (id_l, id_r) = boundary_identifiers(g_1D) | 21 (id_l, id_r) = boundary_identifiers(g_1D) |
31 | 22 |
32 e_l = boundary_restriction(g_1D,op.eClosure,id_l) | 23 e_l = boundary_restriction(g_1D,op.eClosure,id_l) |
33 e_r = boundary_restriction(g_1D,op.eClosure,id_r) | 24 e_r = boundary_restriction(g_1D,op.eClosure,id_r) |
34 e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r)) | 25 e_dict = StaticDict(Pair(id_l,e_l),Pair(id_r,e_r)) |
35 | 26 |
36 d_l = normal_derivative(g_1D,op.dClosure,id_l) | 27 d_l = normal_derivative(g_1D,op.dClosure,id_l) |
37 d_r = normal_derivative(g_1D,op.dClosure,id_r) | 28 d_r = normal_derivative(g_1D,op.dClosure,id_r) |
38 d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r)) | 29 d_dict = StaticDict(Pair(id_l,d_l),Pair(id_r,d_r)) |
39 | 30 |
40 H_l = inner_product(boundary_grid(g_1D,id_l),op.quadratureClosure) | 31 H_l = inner_product(boundary_grid(g_1D,id_l),op.quadratureClosure) |
41 H_r = inner_product(boundary_grid(g_1D,id_r),op.quadratureClosure) | 32 H_r = inner_product(boundary_grid(g_1D,id_r),op.quadratureClosure) |
42 Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r)) | 33 Hb_dict = StaticDict(Pair(id_l,H_l),Pair(id_r,H_r)) |
43 | 34 |
44 L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4) | 35 L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4) |
45 @test cmp_fields(L,Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)) | 36 @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) |
46 @test L isa TensorMapping{T,1,1} where T | 37 @test L isa TensorMapping{T,1,1} where T |
47 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) | 38 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) |
48 end | 39 end |
49 @testset "3D" begin | 40 @testset "3D" begin |
50 # Create all tensor mappings included in Laplace | 41 # Create all tensor mappings included in Laplace |
58 e_r = boundary_restriction(g_3D,op.eClosure,id_r) | 49 e_r = boundary_restriction(g_3D,op.eClosure,id_r) |
59 e_s = boundary_restriction(g_3D,op.eClosure,id_s) | 50 e_s = boundary_restriction(g_3D,op.eClosure,id_s) |
60 e_n = boundary_restriction(g_3D,op.eClosure,id_n) | 51 e_n = boundary_restriction(g_3D,op.eClosure,id_n) |
61 e_b = boundary_restriction(g_3D,op.eClosure,id_b) | 52 e_b = boundary_restriction(g_3D,op.eClosure,id_b) |
62 e_t = boundary_restriction(g_3D,op.eClosure,id_t) | 53 e_t = boundary_restriction(g_3D,op.eClosure,id_t) |
63 e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r), | 54 e_dict = StaticDict(Pair(id_l,e_l),Pair(id_r,e_r), |
64 Pair(id_s,e_s),Pair(id_n,e_n), | 55 Pair(id_s,e_s),Pair(id_n,e_n), |
65 Pair(id_b,e_b),Pair(id_t,e_t)) | 56 Pair(id_b,e_b),Pair(id_t,e_t)) |
66 | 57 |
67 d_l = normal_derivative(g_3D,op.dClosure,id_l) | 58 d_l = normal_derivative(g_3D,op.dClosure,id_l) |
68 d_r = normal_derivative(g_3D,op.dClosure,id_r) | 59 d_r = normal_derivative(g_3D,op.dClosure,id_r) |
69 d_s = normal_derivative(g_3D,op.dClosure,id_s) | 60 d_s = normal_derivative(g_3D,op.dClosure,id_s) |
70 d_n = normal_derivative(g_3D,op.dClosure,id_n) | 61 d_n = normal_derivative(g_3D,op.dClosure,id_n) |
71 d_b = normal_derivative(g_3D,op.dClosure,id_b) | 62 d_b = normal_derivative(g_3D,op.dClosure,id_b) |
72 d_t = normal_derivative(g_3D,op.dClosure,id_t) | 63 d_t = normal_derivative(g_3D,op.dClosure,id_t) |
73 d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r), | 64 d_dict = StaticDict(Pair(id_l,d_l),Pair(id_r,d_r), |
74 Pair(id_s,d_s),Pair(id_n,d_n), | 65 Pair(id_s,d_s),Pair(id_n,d_n), |
75 Pair(id_b,d_b),Pair(id_t,d_t)) | 66 Pair(id_b,d_b),Pair(id_t,d_t)) |
76 | 67 |
77 H_l = inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) | 68 H_l = inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) |
78 H_r = inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) | 69 H_r = inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) |
79 H_s = inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) | 70 H_s = inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) |
80 H_n = inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) | 71 H_n = inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) |
81 H_b = inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) | 72 H_b = inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) |
82 H_t = inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) | 73 H_t = inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) |
83 Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r), | 74 Hb_dict = StaticDict(Pair(id_l,H_l),Pair(id_r,H_r), |
84 Pair(id_s,H_s),Pair(id_n,H_n), | 75 Pair(id_s,H_s),Pair(id_n,H_n), |
85 Pair(id_b,H_b),Pair(id_t,H_t)) | 76 Pair(id_b,H_b),Pair(id_t,H_t)) |
86 | 77 |
87 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) | 78 L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) |
88 @test cmp_fields(L,Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)) | 79 @test L == Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) |
89 @test L isa TensorMapping{T,3,3} where T | 80 @test L isa TensorMapping{T,3,3} where T |
90 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) | 81 @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) |
91 end | 82 end |
92 end | 83 end |
93 | 84 |