Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 750:f88b2117dc69 feature/laplace_opset
Merge in default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 19 Mar 2021 16:52:53 +0100 |
parents | 6114274447f5 |
children | f94feb005e7d |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors using Sbplib.RegionIndices """ cmp_fields(s1,s2) Compares the fields of two structs s1, s2, using the == operator. """ function cmp_fields(s1::T,s2::T) where T f = fieldnames(T) return getfield.(Ref(s1),f) == getfield.(Ref(s2),f) end @testset "Laplace" begin g_1D = EquidistantGrid(101, 0.0, 1.) g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "Constructors" begin @testset "1D" begin # Create all tensor mappings included in Laplace Δ = laplace(g_1D, op.innerStencil, op.closureStencils) H = inner_product(g_1D, op.quadratureClosure) Hi = inverse_inner_product(g_1D, op.quadratureClosure) (id_l, id_r) = boundary_identifiers(g_1D) e_l = boundary_restriction(g_1D,op.eClosure,id_l) e_r = boundary_restriction(g_1D,op.eClosure,id_r) e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r)) d_l = normal_derivative(g_1D,op.dClosure,id_l) d_r = normal_derivative(g_1D,op.dClosure,id_r) d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r)) H_l = inner_product(boundary_grid(g_1D,id_l),op.quadratureClosure) H_r = inner_product(boundary_grid(g_1D,id_r),op.quadratureClosure) Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r)) L = Laplace(g_1D, sbp_operators_path()*"standard_diagonal.toml"; order=4) @test cmp_fields(L,Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)) @test L isa TensorMapping{T,1,1} where T @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) end @testset "3D" begin # Create all tensor mappings included in Laplace Δ = laplace(g_3D, op.innerStencil, op.closureStencils) H = inner_product(g_3D, op.quadratureClosure) Hi = inverse_inner_product(g_3D, op.quadratureClosure) (id_l, id_r, id_s, id_n, id_b, id_t) = boundary_identifiers(g_3D) e_l = boundary_restriction(g_3D,op.eClosure,id_l) e_r = boundary_restriction(g_3D,op.eClosure,id_r) e_s = boundary_restriction(g_3D,op.eClosure,id_s) e_n = boundary_restriction(g_3D,op.eClosure,id_n) e_b = boundary_restriction(g_3D,op.eClosure,id_b) e_t = boundary_restriction(g_3D,op.eClosure,id_t) e_dict = Dict(Pair(id_l,e_l),Pair(id_r,e_r), Pair(id_s,e_s),Pair(id_n,e_n), Pair(id_b,e_b),Pair(id_t,e_t)) d_l = normal_derivative(g_3D,op.dClosure,id_l) d_r = normal_derivative(g_3D,op.dClosure,id_r) d_s = normal_derivative(g_3D,op.dClosure,id_s) d_n = normal_derivative(g_3D,op.dClosure,id_n) d_b = normal_derivative(g_3D,op.dClosure,id_b) d_t = normal_derivative(g_3D,op.dClosure,id_t) d_dict = Dict(Pair(id_l,d_l),Pair(id_r,d_r), Pair(id_s,d_s),Pair(id_n,d_n), Pair(id_b,d_b),Pair(id_t,d_t)) H_l = inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) H_r = inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) H_s = inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) H_n = inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) H_b = inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) H_t = inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) Hb_dict = Dict(Pair(id_l,H_l),Pair(id_r,H_r), Pair(id_s,H_s),Pair(id_n,H_n), Pair(id_b,H_b),Pair(id_t,H_t)) L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) @test cmp_fields(L,Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict)) @test L isa TensorMapping{T,3,3} where T @inferred Laplace(Δ,H,Hi,e_dict,d_dict,Hb_dict) end end @testset "laplace" begin @testset "1D" begin L = laplace(g_1D, op.innerStencil, op.closureStencils) @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) @test L isa TensorMapping{T,1,1} where T end @testset "3D" begin L = laplace(g_3D, op.innerStencil, op.closureStencils) @test L isa TensorMapping{T,3,3} where T Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) @test L == Dxx + Dyy + Dzz @test L isa TensorMapping{T,3,3} where T end end @testset "inner_product" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) @test inner_product(L) == inner_product(g_3D,op.quadratureClosure) end @testset "inverse_inner_product" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) @test inverse_inner_product(L) == inverse_inner_product(g_3D,op.quadratureClosure) end @testset "boundary_restriction" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) id_l = CartesianBoundary{1,Lower}() id_r = CartesianBoundary{1,Upper}() id_s = CartesianBoundary{2,Lower}() id_n = CartesianBoundary{2,Upper}() id_b = CartesianBoundary{3,Lower}() id_t = CartesianBoundary{3,Upper}() @test boundary_restriction(L,id_l) == boundary_restriction(g_3D,op.eClosure,id_l) @test boundary_restriction(L,id_r) == boundary_restriction(g_3D,op.eClosure,id_r) @test boundary_restriction(L,id_s) == boundary_restriction(g_3D,op.eClosure,id_s) @test boundary_restriction(L,id_n) == boundary_restriction(g_3D,op.eClosure,id_n) @test boundary_restriction(L,id_b) == boundary_restriction(g_3D,op.eClosure,id_b) @test boundary_restriction(L,id_t) == boundary_restriction(g_3D,op.eClosure,id_t) end @testset "normal_derivative" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) id_l = CartesianBoundary{1,Lower}() id_r = CartesianBoundary{1,Upper}() id_s = CartesianBoundary{2,Lower}() id_n = CartesianBoundary{2,Upper}() id_b = CartesianBoundary{3,Lower}() id_t = CartesianBoundary{3,Upper}() @test normal_derivative(L,id_l) == normal_derivative(g_3D,op.dClosure,id_l) @test normal_derivative(L,id_r) == normal_derivative(g_3D,op.dClosure,id_r) @test normal_derivative(L,id_s) == normal_derivative(g_3D,op.dClosure,id_s) @test normal_derivative(L,id_n) == normal_derivative(g_3D,op.dClosure,id_n) @test normal_derivative(L,id_b) == normal_derivative(g_3D,op.dClosure,id_b) @test normal_derivative(L,id_t) == normal_derivative(g_3D,op.dClosure,id_t) end @testset "boundary_quadrature" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) id_l = CartesianBoundary{1,Lower}() id_r = CartesianBoundary{1,Upper}() id_s = CartesianBoundary{2,Lower}() id_n = CartesianBoundary{2,Upper}() id_b = CartesianBoundary{3,Lower}() id_t = CartesianBoundary{3,Upper}() @test boundary_quadrature(L,id_l) == inner_product(boundary_grid(g_3D,id_l),op.quadratureClosure) @test boundary_quadrature(L,id_r) == inner_product(boundary_grid(g_3D,id_r),op.quadratureClosure) @test boundary_quadrature(L,id_s) == inner_product(boundary_grid(g_3D,id_s),op.quadratureClosure) @test boundary_quadrature(L,id_n) == inner_product(boundary_grid(g_3D,id_n),op.quadratureClosure) @test boundary_quadrature(L,id_b) == inner_product(boundary_grid(g_3D,id_b),op.quadratureClosure) @test boundary_quadrature(L,id_t) == inner_product(boundary_grid(g_3D,id_t),op.quadratureClosure) end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,evalOn(g_3D,f_i)) end v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=2) @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin L = Laplace(g_3D, sbp_operators_path()*"standard_diagonal.toml"; order=4) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test L*v ≈ Δv rtol = 5e-4 norm = l2 end end end