comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1360:f59228534d3a tooling/benchmarks

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Sat, 20 May 2023 15:15:22 +0200
parents 08f06bfacd5c
children bdcdbd4ea9cd efa994405c38
comparison
equal deleted inserted replaced
1321:42738616422e 1360:f59228534d3a
1 """ 1 """
2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim}
3 3
4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a 4 The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a
5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` 5 `LazyTensor`.
6 used to construct the `LazyTensor `.
7 """ 6 """
8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} 7 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim}
9 D::TM # Difference operator 8 D::TM # Difference operator
10 stencil_set::StencilSet # Stencil set of the operator 9 stencil_set::StencilSet # Stencil set of the operator
11 end 10 end
12 11
13 """ 12 """
14 Laplace(grid::Equidistant, stencil_set) 13 Laplace(g::Grid, stencil_set::StencilSet)
15 14
16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. 15 Creates the `Laplace` operator `Δ` on `g` given `stencil_set`.
17 16
18 See also [`laplace`](@ref). 17 See also [`laplace`](@ref).
19 """ 18 """
20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) 19 function Laplace(g::Grid, stencil_set::StencilSet)
21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 20 Δ = laplace(g, stencil_set)
22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) 21 return Laplace(Δ, stencil_set)
23 Δ = laplace(grid, inner_stencil,closure_stencils)
24 return Laplace(Δ,stencil_set)
25 end 22 end
26 23
27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) 24 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D)
28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) 25 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D)
29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) 26 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...)
30 27
31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. 28 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented.
32 # Base.show(io::IO, L::Laplace) = ... 29 # Base.show(io::IO, L::Laplace) = ...
33 30
34 """ 31 """
35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) 32 laplace(g::Grid, stencil_set)
36 33
37 Creates the Laplace operator operator `Δ` as a `LazyTensor` 34 Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`.
38 35
39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using 36 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The
40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` 37 approximation depends on the type of grid and the stencil set.
41 for the points in the closure regions.
42
43 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a
44 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s
45 where the sum is carried out lazily.
46 38
47 See also: [`second_derivative`](@ref). 39 See also: [`second_derivative`](@ref).
48 """ 40 """
49 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) 41 function laplace end
50 Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) 42 function laplace(g::TensorGrid, stencil_set)
51 for d = 2:ndims(grid) 43 # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ)
52 Δ += second_derivative(grid, inner_stencil, closure_stencils, d) 44 # Δᵢ = laplace(gᵢ, stencil_set)
45 # LazyTensors.inflate(Δᵢ, size(g), i)
46 # end
47
48 Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1)
49 for d = 2:ndims(g)
50 Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d)
53 end 51 end
54 return Δ 52 return Δ
55 end 53 end
54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set)