Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1751:f3d7e2d7a43f feature/sbp_operators/laplace_curvilinear
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 11 Sep 2024 16:26:19 +0200 |
parents | 29b96fc75bee b5690ab5f0b8 |
children | 1f42944d4a72 |
comparison
equal
deleted
inserted
replaced
1731:3684db043add | 1751:f3d7e2d7a43f |
---|---|
81 | 81 |
82 The operators required to construct the SAT for imposing a Dirichlet | 82 The operators required to construct the SAT for imposing a Dirichlet |
83 condition. `H_tuning` and `R_tuning` are used to specify the strength of the | 83 condition. `H_tuning` and `R_tuning` are used to specify the strength of the |
84 penalty. | 84 penalty. |
85 | 85 |
86 See also: [`sat`](@ref),[`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). | 86 See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). |
87 """ | 87 """ |
88 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) | 88 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) |
89 id = boundary(bc) | 89 id = boundary(bc) |
90 set = Δ.stencil_set | 90 set = Δ.stencil_set |
91 H⁻¹ = inverse_inner_product(g,set) | 91 H⁻¹ = inverse_inner_product(g,set) |
92 Hᵧ = inner_product(boundary_grid(g, id), set) | 92 Hᵧ = inner_product(boundary_grid(g, id), set) |
93 e = boundary_restriction(g, set, id) | 93 e = boundary_restriction(g, set, id) |
94 d = normal_derivative(g, set, id) | 94 d = normal_derivative(g, set, id) |
95 B = positivity_decomposition(Δ, g, bc; H_tuning, R_tuning) | 95 B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) |
96 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ | 96 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ |
97 return penalty_tensor, e | 97 return penalty_tensor, e |
98 end | 98 end |
99 | 99 |
100 """ | 100 """ |
115 penalty_tensor = -H⁻¹∘e'∘Hᵧ | 115 penalty_tensor = -H⁻¹∘e'∘Hᵧ |
116 return penalty_tensor, d | 116 return penalty_tensor, d |
117 end | 117 end |
118 | 118 |
119 """ | 119 """ |
120 positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) | 120 positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) |
121 | 121 |
122 Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive | 122 Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive |
123 definite with respect to the boundary quadrature. Here `d` is the normal | 123 definite with respect to the boundary quadrature. Here `d` is the normal |
124 derivative and `e` is the boundary restriction operator. `B` can then be used | 124 derivative and `e` is the boundary restriction operator. `B` can then be used |
125 to form a symmetric and energy stable penalty for a Dirichlet condition. The | 125 to form a symmetric and energy stable penalty for a Dirichlet condition. The |
126 parameters `H_tuning` and `R_tuning` are used to specify the strength of the | 126 parameters `H_tuning` and `R_tuning` are used to specify the strength of the |
127 penalty and must be greater than 1. For details we refer to | 127 penalty and must be greater than 1. For details we refer to |
128 https://doi.org/10.1016/j.jcp.2020.109294 | 128 <https://doi.org/10.1016/j.jcp.2020.109294> |
129 """ | 129 """ |
130 function positivity_decomposition(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) | 130 function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) |
131 @assert(H_tuning ≥ 1.) | 131 @assert(H_tuning ≥ 1.) |
132 @assert(R_tuning ≥ 1.) | 132 @assert(R_tuning ≥ 1.) |
133 Nτ_H, τ_R = positivity_limits(Δ,g,bc) | 133 Nτ_H, τ_R = positivity_limits(Δ,g,b) |
134 return H_tuning*Nτ_H + R_tuning*τ_R | 134 return H_tuning*Nτ_H + R_tuning*τ_R |
135 end | 135 end |
136 | 136 |
137 # TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then | 137 function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) |
138 # change bc::BoundaryCondition to id::BoundaryIdentifier | |
139 function positivity_limits(Δ::Laplace, g::EquidistantGrid, bc::DirichletCondition) | |
140 h = spacing(g) | 138 h = spacing(g) |
141 θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) | 139 θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) |
142 θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) | 140 θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) |
143 | 141 |
144 τ_H = 1/(h*θ_H) | 142 τ_H = one(eltype(Δ))/(h*θ_H) |
145 τ_R = 1/(h*θ_R) | 143 τ_R = one(eltype(Δ))/(h*θ_R) |
146 return τ_H, τ_R | 144 return τ_H, τ_R |
147 end | 145 end |
148 | 146 |
149 function positivity_limits(Δ::Laplace, g::TensorGrid, bc::DirichletCondition) | 147 function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) |
150 τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(boundary(bc))], bc) | 148 τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) |
151 return τ_H*ndims(g), τ_R | 149 return τ_H*ndims(g), τ_R |
152 end | 150 end |