Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/laplace/secondderivative.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators
NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 19:14:39 +0100 |
parents | 9330338d6ab5 |
children | 1db945cba3a2 |
comparison
equal
deleted
inserted
replaced
610:e40e7439d1b4 | 611:e71f2f81b5f8 |
---|---|
1 """ | 1 function SecondDerivative(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils, direction) where Dim |
2 SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} | 2 h_inv = inverse_spacing(grid)[direction] |
3 Implements the Laplace tensor operator `L` with constant grid spacing and coefficients | 3 return volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), size(grid), even, direction) |
4 in 1D dimension | |
5 """ | |
6 | |
7 struct SecondDerivative{T,N,M,K} <: TensorMapping{T,1,1} | |
8 h_inv::T # The grid spacing could be included in the stencil already. Preferable? | |
9 innerStencil::Stencil{T,N} | |
10 closureStencils::NTuple{M,Stencil{T,K}} | |
11 size::NTuple{1,Int} | |
12 end | 4 end |
5 SecondDerivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = SecondDerivative(grid,inner_stencil,closure_stencils,1) | |
13 export SecondDerivative | 6 export SecondDerivative |
14 | |
15 function SecondDerivative(grid::EquidistantGrid{1}, innerStencil, closureStencils) | |
16 h_inv = inverse_spacing(grid)[1] | |
17 return SecondDerivative(h_inv, innerStencil, closureStencils, size(grid)) | |
18 end | |
19 | |
20 LazyTensors.range_size(D2::SecondDerivative) = D2.size | |
21 LazyTensors.domain_size(D2::SecondDerivative) = D2.size | |
22 | |
23 # Apply for different regions Lower/Interior/Upper or Unknown region | |
24 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Lower}) where T | |
25 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(i)], v, Int(i)) | |
26 end | |
27 | |
28 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Interior}) where T | |
29 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(i)) | |
30 end | |
31 | |
32 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Upper}) where T | |
33 N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) | |
34 return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(i)+1], v, Int(i)) | |
35 end | |
36 | |
37 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i) where T | |
38 N = length(v) # TODO: Use domain_size here instead? | |
39 r = getregion(i, closuresize(D2), N) | |
40 return LazyTensors.apply(D2, v, Index(i, r)) | |
41 end | |
42 | |
43 closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M |