Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/SbpOperators_test.jl @ 711:df88aee35bb9 feature/selectable_tests
Switch to _test.jl suffix
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 20 Feb 2021 20:45:40 +0100 |
parents | test/SbpOperators/testSbpOperators.jl@48a61e085e60 |
children | 11a444d6fc93 |
comparison
equal
deleted
inserted
replaced
710:44fa9a171557 | 711:df88aee35bb9 |
---|---|
1 using Test | |
2 using Sbplib.SbpOperators | |
3 using Sbplib.Grids | |
4 using Sbplib.RegionIndices | |
5 using Sbplib.LazyTensors | |
6 using LinearAlgebra | |
7 using TOML | |
8 | |
9 import Sbplib.SbpOperators.Stencil | |
10 import Sbplib.SbpOperators.VolumeOperator | |
11 import Sbplib.SbpOperators.volume_operator | |
12 import Sbplib.SbpOperators.BoundaryOperator | |
13 import Sbplib.SbpOperators.boundary_operator | |
14 import Sbplib.SbpOperators.even | |
15 import Sbplib.SbpOperators.odd | |
16 | |
17 | |
18 @testset "SbpOperators" begin | |
19 | |
20 @testset "Stencil" begin | |
21 s = Stencil((-2,2), (1.,2.,2.,3.,4.)) | |
22 @test s isa Stencil{Float64, 5} | |
23 | |
24 @test eltype(s) == Float64 | |
25 @test SbpOperators.scale(s, 2) == Stencil((-2,2), (2.,4.,4.,6.,8.)) | |
26 | |
27 @test Stencil(1,2,3,4; center=1) == Stencil((0, 3),(1,2,3,4)) | |
28 @test Stencil(1,2,3,4; center=2) == Stencil((-1, 2),(1,2,3,4)) | |
29 @test Stencil(1,2,3,4; center=4) == Stencil((-3, 0),(1,2,3,4)) | |
30 | |
31 @test CenteredStencil(1,2,3,4,5) == Stencil((-2, 2), (1,2,3,4,5)) | |
32 @test_throws ArgumentError CenteredStencil(1,2,3,4) | |
33 end | |
34 | |
35 @testset "parse_rational" begin | |
36 @test SbpOperators.parse_rational("1") isa Rational | |
37 @test SbpOperators.parse_rational("1") == 1//1 | |
38 @test SbpOperators.parse_rational("1/2") isa Rational | |
39 @test SbpOperators.parse_rational("1/2") == 1//2 | |
40 @test SbpOperators.parse_rational("37/13") isa Rational | |
41 @test SbpOperators.parse_rational("37/13") == 37//13 | |
42 end | |
43 | |
44 @testset "readoperator" begin | |
45 toml_str = """ | |
46 [meta] | |
47 type = "equidistant" | |
48 | |
49 [order2] | |
50 H.inner = ["1"] | |
51 | |
52 D1.inner_stencil = ["-1/2", "0", "1/2"] | |
53 D1.closure_stencils = [ | |
54 ["-1", "1"], | |
55 ] | |
56 | |
57 d1.closure = ["-3/2", "2", "-1/2"] | |
58 | |
59 [order4] | |
60 H.closure = ["17/48", "59/48", "43/48", "49/48"] | |
61 | |
62 D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] | |
63 D2.closure_stencils = [ | |
64 [ "2", "-5", "4", "-1", "0", "0"], | |
65 [ "1", "-2", "1", "0", "0", "0"], | |
66 [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], | |
67 [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], | |
68 ] | |
69 """ | |
70 | |
71 parsed_toml = TOML.parse(toml_str) | |
72 @testset "get_stencil" begin | |
73 @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil") == Stencil(-1/2, 0., 1/2, center=2) | |
74 @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=1) == Stencil(-1/2, 0., 1/2; center=1) | |
75 @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=3) == Stencil(-1/2, 0., 1/2; center=3) | |
76 | |
77 @test get_stencil(parsed_toml, "order2", "H", "inner") == Stencil(1.; center=1) | |
78 | |
79 @test_throws AssertionError get_stencil(parsed_toml, "meta", "type") | |
80 @test_throws AssertionError get_stencil(parsed_toml, "order2", "D1", "closure_stencils") | |
81 end | |
82 | |
83 @testset "get_stencils" begin | |
84 @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(1,)) == (Stencil(-1., 1., center=1),) | |
85 @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(2,)) == (Stencil(-1., 1., center=2),) | |
86 @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=[2]) == (Stencil(-1., 1., center=2),) | |
87 | |
88 @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=[1,1,1,1]) == ( | |
89 Stencil( 2., -5., 4., -1., 0., 0., center=1), | |
90 Stencil( 1., -2., 1., 0., 0., 0., center=1), | |
91 Stencil( -4/43, 59/43, -110/43, 59/43, -4/43, 0., center=1), | |
92 Stencil( -1/49, 0., 59/49, -118/49, 64/49, -4/49, center=1), | |
93 ) | |
94 | |
95 @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(4,2,3,1)) == ( | |
96 Stencil( 2., -5., 4., -1., 0., 0., center=4), | |
97 Stencil( 1., -2., 1., 0., 0., 0., center=2), | |
98 Stencil( -4/43, 59/43, -110/43, 59/43, -4/43, 0., center=3), | |
99 Stencil( -1/49, 0., 59/49, -118/49, 64/49, -4/49, center=1), | |
100 ) | |
101 | |
102 @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=1:4) == ( | |
103 Stencil( 2., -5., 4., -1., 0., 0., center=1), | |
104 Stencil( 1., -2., 1., 0., 0., 0., center=2), | |
105 Stencil( -4/43, 59/43, -110/43, 59/43, -4/43, 0., center=3), | |
106 Stencil( -1/49, 0., 59/49, -118/49, 64/49, -4/49, center=4), | |
107 ) | |
108 | |
109 @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3)) | |
110 @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3,5,4)) | |
111 @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "inner_stencil",centers=(1,2)) | |
112 end | |
113 | |
114 @testset "get_tuple" begin | |
115 @test get_tuple(parsed_toml, "order2", "d1", "closure") == (-3/2, 2, -1/2) | |
116 | |
117 @test_throws AssertionError get_tuple(parsed_toml, "meta", "type") | |
118 end | |
119 end | |
120 | |
121 @testset "VolumeOperator" begin | |
122 inner_stencil = CenteredStencil(1/4, 2/4, 1/4) | |
123 closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(0.,1.; center=2)) | |
124 g_1D = EquidistantGrid(11,0.,1.) | |
125 g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.)) | |
126 g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.)) | |
127 @testset "Constructors" begin | |
128 @testset "1D" begin | |
129 op = VolumeOperator(inner_stencil,closure_stencils,(11,),even) | |
130 @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even) | |
131 @test op == volume_operator(g_1D,inner_stencil,closure_stencils,even,1) | |
132 @test op isa TensorMapping{T,1,1} where T | |
133 end | |
134 @testset "2D" begin | |
135 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) | |
136 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) | |
137 Ix = IdentityMapping{Float64}((11,)) | |
138 Iy = IdentityMapping{Float64}((12,)) | |
139 @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy | |
140 @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even) | |
141 @test op_x isa TensorMapping{T,2,2} where T | |
142 @test op_y isa TensorMapping{T,2,2} where T | |
143 end | |
144 @testset "3D" begin | |
145 op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) | |
146 op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) | |
147 op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) | |
148 Ix = IdentityMapping{Float64}((11,)) | |
149 Iy = IdentityMapping{Float64}((12,)) | |
150 Iz = IdentityMapping{Float64}((10,)) | |
151 @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy⊗Iz | |
152 @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)⊗Iz | |
153 @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),even) | |
154 @test op_x isa TensorMapping{T,3,3} where T | |
155 @test op_y isa TensorMapping{T,3,3} where T | |
156 @test op_z isa TensorMapping{T,3,3} where T | |
157 end | |
158 end | |
159 | |
160 @testset "Sizes" begin | |
161 @testset "1D" begin | |
162 op = volume_operator(g_1D,inner_stencil,closure_stencils,even,1) | |
163 @test range_size(op) == domain_size(op) == size(g_1D) | |
164 end | |
165 | |
166 @testset "2D" begin | |
167 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) | |
168 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) | |
169 @test range_size(op_y) == domain_size(op_y) == | |
170 range_size(op_x) == domain_size(op_x) == size(g_2D) | |
171 end | |
172 @testset "3D" begin | |
173 op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) | |
174 op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) | |
175 op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) | |
176 @test range_size(op_z) == domain_size(op_z) == | |
177 range_size(op_y) == domain_size(op_y) == | |
178 range_size(op_x) == domain_size(op_x) == size(g_3D) | |
179 end | |
180 end | |
181 | |
182 op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) | |
183 op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2) | |
184 v = zeros(size(g_2D)) | |
185 Nx = size(g_2D)[1] | |
186 Ny = size(g_2D)[2] | |
187 for i = 1:Nx | |
188 v[i,:] .= i | |
189 end | |
190 rx = copy(v) | |
191 rx[1,:] .= 1.5 | |
192 rx[Nx,:] .= (2*Nx-1)/2 | |
193 ry = copy(v) | |
194 ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny] | |
195 | |
196 @testset "Application" begin | |
197 @test op_x*v ≈ rx rtol = 1e-14 | |
198 @test op_y*v ≈ ry rtol = 1e-14 | |
199 end | |
200 | |
201 @testset "Regions" begin | |
202 @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14 | |
203 @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14 | |
204 @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14 | |
205 @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14 | |
206 @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14 | |
207 | |
208 @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)] | |
209 @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)] | |
210 | |
211 @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14 | |
212 @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14 | |
213 @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14 | |
214 @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14 | |
215 @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14 | |
216 | |
217 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)] | |
218 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)] | |
219 end | |
220 | |
221 @testset "Inferred" begin | |
222 @inferred apply(op_x, v,1,1) | |
223 @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower)) | |
224 @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower)) | |
225 @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower)) | |
226 | |
227 @inferred apply(op_y, v,1,1) | |
228 @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower)) | |
229 @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior)) | |
230 @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper)) | |
231 end | |
232 | |
233 end | |
234 | |
235 @testset "SecondDerivative" begin | |
236 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
237 Lx = 3.5 | |
238 Ly = 3. | |
239 g_1D = EquidistantGrid(121, 0.0, Lx) | |
240 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) | |
241 | |
242 @testset "Constructors" begin | |
243 @testset "1D" begin | |
244 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
245 @test Dₓₓ == second_derivative(g_1D,op.innerStencil,op.closureStencils,1) | |
246 @test Dₓₓ isa VolumeOperator | |
247 end | |
248 @testset "2D" begin | |
249 Dₓₓ = second_derivative(g_2D,op.innerStencil,op.closureStencils,1) | |
250 D2 = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
251 I = IdentityMapping{Float64}(size(g_2D)[2]) | |
252 @test Dₓₓ == D2⊗I | |
253 @test Dₓₓ isa TensorMapping{T,2,2} where T | |
254 end | |
255 end | |
256 | |
257 # Exact differentiation is measured point-wise. In other cases | |
258 # the error is measured in the l2-norm. | |
259 @testset "Accuracy" begin | |
260 @testset "1D" begin | |
261 l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); | |
262 monomials = () | |
263 maxOrder = 4; | |
264 for i = 0:maxOrder-1 | |
265 f_i(x) = 1/factorial(i)*x^i | |
266 monomials = (monomials...,evalOn(g_1D,f_i)) | |
267 end | |
268 v = evalOn(g_1D,x -> sin(x)) | |
269 vₓₓ = evalOn(g_1D,x -> -sin(x)) | |
270 | |
271 # 2nd order interior stencil, 1nd order boundary stencil, | |
272 # implies that L*v should be exact for monomials up to order 2. | |
273 @testset "2nd order" begin | |
274 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
275 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
276 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
277 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
278 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | |
279 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 | |
280 end | |
281 | |
282 # 4th order interior stencil, 2nd order boundary stencil, | |
283 # implies that L*v should be exact for monomials up to order 3. | |
284 @testset "4th order" begin | |
285 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
286 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | |
287 # NOTE: high tolerances for checking the "exact" differentiation | |
288 # due to accumulation of round-off errors/cancellation errors? | |
289 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
290 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | |
291 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | |
292 @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 | |
293 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 | |
294 end | |
295 end | |
296 | |
297 @testset "2D" begin | |
298 l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); | |
299 binomials = () | |
300 maxOrder = 4; | |
301 for i = 0:maxOrder-1 | |
302 f_i(x,y) = 1/factorial(i)*y^i + x^i | |
303 binomials = (binomials...,evalOn(g_2D,f_i)) | |
304 end | |
305 v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) | |
306 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) | |
307 | |
308 # 2nd order interior stencil, 1st order boundary stencil, | |
309 # implies that L*v should be exact for binomials up to order 2. | |
310 @testset "2nd order" begin | |
311 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
312 Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) | |
313 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
314 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
315 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | |
316 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 | |
317 end | |
318 | |
319 # 4th order interior stencil, 2nd order boundary stencil, | |
320 # implies that L*v should be exact for binomials up to order 3. | |
321 @testset "4th order" begin | |
322 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
323 Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) | |
324 # NOTE: high tolerances for checking the "exact" differentiation | |
325 # due to accumulation of round-off errors/cancellation errors? | |
326 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
327 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | |
328 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | |
329 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 | |
330 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 | |
331 end | |
332 end | |
333 end | |
334 end | |
335 | |
336 @testset "Laplace" begin | |
337 g_1D = EquidistantGrid(101, 0.0, 1.) | |
338 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) | |
339 @testset "Constructors" begin | |
340 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
341 @testset "1D" begin | |
342 L = laplace(g_1D, op.innerStencil, op.closureStencils) | |
343 @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) | |
344 @test L isa TensorMapping{T,1,1} where T | |
345 end | |
346 @testset "3D" begin | |
347 L = laplace(g_3D, op.innerStencil, op.closureStencils) | |
348 @test L isa TensorMapping{T,3,3} where T | |
349 Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) | |
350 Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) | |
351 Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) | |
352 @test L == Dxx + Dyy + Dzz | |
353 end | |
354 end | |
355 | |
356 # Exact differentiation is measured point-wise. In other cases | |
357 # the error is measured in the l2-norm. | |
358 @testset "Accuracy" begin | |
359 l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); | |
360 polynomials = () | |
361 maxOrder = 4; | |
362 for i = 0:maxOrder-1 | |
363 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) | |
364 polynomials = (polynomials...,evalOn(g_3D,f_i)) | |
365 end | |
366 v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) | |
367 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) | |
368 | |
369 # 2nd order interior stencil, 1st order boundary stencil, | |
370 # implies that L*v should be exact for binomials up to order 2. | |
371 @testset "2nd order" begin | |
372 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
373 L = laplace(g_3D,op.innerStencil,op.closureStencils) | |
374 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
375 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
376 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | |
377 @test L*v ≈ Δv rtol = 5e-2 norm = l2 | |
378 end | |
379 | |
380 # 4th order interior stencil, 2nd order boundary stencil, | |
381 # implies that L*v should be exact for binomials up to order 3. | |
382 @testset "4th order" begin | |
383 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
384 L = laplace(g_3D,op.innerStencil,op.closureStencils) | |
385 # NOTE: high tolerances for checking the "exact" differentiation | |
386 # due to accumulation of round-off errors/cancellation errors? | |
387 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
388 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
389 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | |
390 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 | |
391 @test L*v ≈ Δv rtol = 5e-4 norm = l2 | |
392 end | |
393 end | |
394 end | |
395 | |
396 @testset "Diagonal-stencil inner_product" begin | |
397 Lx = π/2. | |
398 Ly = Float64(π) | |
399 Lz = 1. | |
400 g_1D = EquidistantGrid(77, 0.0, Lx) | |
401 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
402 g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz)) | |
403 integral(H,v) = sum(H*v) | |
404 @testset "inner_product" begin | |
405 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
406 @testset "0D" begin | |
407 H = inner_product(EquidistantGrid{Float64}(),op.quadratureClosure) | |
408 @test H == IdentityMapping{Float64}() | |
409 @test H isa TensorMapping{T,0,0} where T | |
410 end | |
411 @testset "1D" begin | |
412 H = inner_product(g_1D,op.quadratureClosure) | |
413 inner_stencil = CenteredStencil(1.) | |
414 @test H == inner_product(g_1D,op.quadratureClosure,inner_stencil) | |
415 @test H isa TensorMapping{T,1,1} where T | |
416 end | |
417 @testset "2D" begin | |
418 H = inner_product(g_2D,op.quadratureClosure) | |
419 H_x = inner_product(restrict(g_2D,1),op.quadratureClosure) | |
420 H_y = inner_product(restrict(g_2D,2),op.quadratureClosure) | |
421 @test H == H_x⊗H_y | |
422 @test H isa TensorMapping{T,2,2} where T | |
423 end | |
424 end | |
425 | |
426 @testset "Sizes" begin | |
427 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
428 @testset "1D" begin | |
429 H = inner_product(g_1D,op.quadratureClosure) | |
430 @test domain_size(H) == size(g_1D) | |
431 @test range_size(H) == size(g_1D) | |
432 end | |
433 @testset "2D" begin | |
434 H = inner_product(g_2D,op.quadratureClosure) | |
435 @test domain_size(H) == size(g_2D) | |
436 @test range_size(H) == size(g_2D) | |
437 end | |
438 end | |
439 | |
440 @testset "Accuracy" begin | |
441 @testset "1D" begin | |
442 v = () | |
443 for i = 0:4 | |
444 f_i(x) = 1/factorial(i)*x^i | |
445 v = (v...,evalOn(g_1D,f_i)) | |
446 end | |
447 u = evalOn(g_1D,x->sin(x)) | |
448 | |
449 @testset "2nd order" begin | |
450 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
451 H = inner_product(g_1D,op.quadratureClosure) | |
452 for i = 1:2 | |
453 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 | |
454 end | |
455 @test integral(H,u) ≈ 1. rtol = 1e-4 | |
456 end | |
457 | |
458 @testset "4th order" begin | |
459 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
460 H = inner_product(g_1D,op.quadratureClosure) | |
461 for i = 1:4 | |
462 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 | |
463 end | |
464 @test integral(H,u) ≈ 1. rtol = 1e-8 | |
465 end | |
466 end | |
467 | |
468 @testset "2D" begin | |
469 b = 2.1 | |
470 v = b*ones(Float64, size(g_2D)) | |
471 u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) | |
472 @testset "2nd order" begin | |
473 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
474 H = inner_product(g_2D,op.quadratureClosure) | |
475 @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 | |
476 @test integral(H,u) ≈ π rtol = 1e-4 | |
477 end | |
478 @testset "4th order" begin | |
479 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
480 H = inner_product(g_2D,op.quadratureClosure) | |
481 @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 | |
482 @test integral(H,u) ≈ π rtol = 1e-8 | |
483 end | |
484 end | |
485 end | |
486 end | |
487 | |
488 @testset "Diagonal-stencil inverse_inner_product" begin | |
489 Lx = π/2. | |
490 Ly = Float64(π) | |
491 g_1D = EquidistantGrid(77, 0.0, Lx) | |
492 g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | |
493 @testset "inverse_inner_product" begin | |
494 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
495 @testset "0D" begin | |
496 Hi = inverse_inner_product(EquidistantGrid{Float64}(),op.quadratureClosure) | |
497 @test Hi == IdentityMapping{Float64}() | |
498 @test Hi isa TensorMapping{T,0,0} where T | |
499 end | |
500 @testset "1D" begin | |
501 Hi = inverse_inner_product(g_1D, op.quadratureClosure); | |
502 inner_stencil = CenteredStencil(1.) | |
503 closures = () | |
504 for i = 1:length(op.quadratureClosure) | |
505 closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) | |
506 end | |
507 @test Hi == inverse_inner_product(g_1D,closures,inner_stencil) | |
508 @test Hi isa TensorMapping{T,1,1} where T | |
509 end | |
510 @testset "2D" begin | |
511 Hi = inverse_inner_product(g_2D,op.quadratureClosure) | |
512 Hi_x = inverse_inner_product(restrict(g_2D,1),op.quadratureClosure) | |
513 Hi_y = inverse_inner_product(restrict(g_2D,2),op.quadratureClosure) | |
514 @test Hi == Hi_x⊗Hi_y | |
515 @test Hi isa TensorMapping{T,2,2} where T | |
516 end | |
517 end | |
518 | |
519 @testset "Sizes" begin | |
520 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
521 @testset "1D" begin | |
522 Hi = inverse_inner_product(g_1D,op.quadratureClosure) | |
523 @test domain_size(Hi) == size(g_1D) | |
524 @test range_size(Hi) == size(g_1D) | |
525 end | |
526 @testset "2D" begin | |
527 Hi = inverse_inner_product(g_2D,op.quadratureClosure) | |
528 @test domain_size(Hi) == size(g_2D) | |
529 @test range_size(Hi) == size(g_2D) | |
530 end | |
531 end | |
532 | |
533 @testset "Accuracy" begin | |
534 @testset "1D" begin | |
535 v = evalOn(g_1D,x->sin(x)) | |
536 u = evalOn(g_1D,x->x^3-x^2+1) | |
537 @testset "2nd order" begin | |
538 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
539 H = inner_product(g_1D,op.quadratureClosure) | |
540 Hi = inverse_inner_product(g_1D,op.quadratureClosure) | |
541 @test Hi*H*v ≈ v rtol = 1e-15 | |
542 @test Hi*H*u ≈ u rtol = 1e-15 | |
543 end | |
544 @testset "4th order" begin | |
545 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
546 H = inner_product(g_1D,op.quadratureClosure) | |
547 Hi = inverse_inner_product(g_1D,op.quadratureClosure) | |
548 @test Hi*H*v ≈ v rtol = 1e-15 | |
549 @test Hi*H*u ≈ u rtol = 1e-15 | |
550 end | |
551 end | |
552 @testset "2D" begin | |
553 v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) | |
554 u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) | |
555 @testset "2nd order" begin | |
556 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
557 H = inner_product(g_2D,op.quadratureClosure) | |
558 Hi = inverse_inner_product(g_2D,op.quadratureClosure) | |
559 @test Hi*H*v ≈ v rtol = 1e-15 | |
560 @test Hi*H*u ≈ u rtol = 1e-15 | |
561 end | |
562 @testset "4th order" begin | |
563 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
564 H = inner_product(g_2D,op.quadratureClosure) | |
565 Hi = inverse_inner_product(g_2D,op.quadratureClosure) | |
566 @test Hi*H*v ≈ v rtol = 1e-15 | |
567 @test Hi*H*u ≈ u rtol = 1e-15 | |
568 end | |
569 end | |
570 end | |
571 end | |
572 | |
573 @testset "BoundaryOperator" begin | |
574 closure_stencil = Stencil((0,2), (2.,1.,3.)) | |
575 g_1D = EquidistantGrid(11, 0.0, 1.0) | |
576 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) | |
577 | |
578 @testset "Constructors" begin | |
579 @testset "1D" begin | |
580 op_l = BoundaryOperator{Lower}(closure_stencil,size(g_1D)[1]) | |
581 @test op_l == BoundaryOperator(g_1D,closure_stencil,Lower()) | |
582 @test op_l == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Lower}()) | |
583 @test op_l isa TensorMapping{T,0,1} where T | |
584 | |
585 op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) | |
586 @test op_r == BoundaryOperator(g_1D,closure_stencil,Upper()) | |
587 @test op_r == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Upper}()) | |
588 @test op_r isa TensorMapping{T,0,1} where T | |
589 end | |
590 | |
591 @testset "2D" begin | |
592 e_w = boundary_operator(g_2D,closure_stencil,CartesianBoundary{1,Upper}()) | |
593 @test e_w isa InflatedTensorMapping | |
594 @test e_w isa TensorMapping{T,1,2} where T | |
595 end | |
596 end | |
597 | |
598 op_l = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Lower}()) | |
599 op_r = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Upper}()) | |
600 | |
601 op_w = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Lower}()) | |
602 op_e = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Upper}()) | |
603 op_s = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Lower}()) | |
604 op_n = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Upper}()) | |
605 | |
606 @testset "Sizes" begin | |
607 @testset "1D" begin | |
608 @test domain_size(op_l) == (11,) | |
609 @test domain_size(op_r) == (11,) | |
610 | |
611 @test range_size(op_l) == () | |
612 @test range_size(op_r) == () | |
613 end | |
614 | |
615 @testset "2D" begin | |
616 @test domain_size(op_w) == (11,15) | |
617 @test domain_size(op_e) == (11,15) | |
618 @test domain_size(op_s) == (11,15) | |
619 @test domain_size(op_n) == (11,15) | |
620 | |
621 @test range_size(op_w) == (15,) | |
622 @test range_size(op_e) == (15,) | |
623 @test range_size(op_s) == (11,) | |
624 @test range_size(op_n) == (11,) | |
625 end | |
626 end | |
627 | |
628 @testset "Application" begin | |
629 @testset "1D" begin | |
630 v = evalOn(g_1D,x->1+x^2) | |
631 u = fill(3.124) | |
632 @test (op_l*v)[] == 2*v[1] + v[2] + 3*v[3] | |
633 @test (op_r*v)[] == 2*v[end] + v[end-1] + 3*v[end-2] | |
634 @test (op_r*v)[1] == 2*v[end] + v[end-1] + 3*v[end-2] | |
635 @test op_l'*u == [2*u[]; u[]; 3*u[]; zeros(8)] | |
636 @test op_r'*u == [zeros(8); 3*u[]; u[]; 2*u[]] | |
637 end | |
638 | |
639 @testset "2D" begin | |
640 v = rand(size(g_2D)...) | |
641 u = fill(3.124) | |
642 @test op_w*v ≈ 2*v[1,:] + v[2,:] + 3*v[3,:] rtol = 1e-14 | |
643 @test op_e*v ≈ 2*v[end,:] + v[end-1,:] + 3*v[end-2,:] rtol = 1e-14 | |
644 @test op_s*v ≈ 2*v[:,1] + v[:,2] + 3*v[:,3] rtol = 1e-14 | |
645 @test op_n*v ≈ 2*v[:,end] + v[:,end-1] + 3*v[:,end-2] rtol = 1e-14 | |
646 | |
647 | |
648 g_x = rand(size(g_2D)[1]) | |
649 g_y = rand(size(g_2D)[2]) | |
650 | |
651 G_w = zeros(Float64, size(g_2D)...) | |
652 G_w[1,:] = 2*g_y | |
653 G_w[2,:] = g_y | |
654 G_w[3,:] = 3*g_y | |
655 | |
656 G_e = zeros(Float64, size(g_2D)...) | |
657 G_e[end,:] = 2*g_y | |
658 G_e[end-1,:] = g_y | |
659 G_e[end-2,:] = 3*g_y | |
660 | |
661 G_s = zeros(Float64, size(g_2D)...) | |
662 G_s[:,1] = 2*g_x | |
663 G_s[:,2] = g_x | |
664 G_s[:,3] = 3*g_x | |
665 | |
666 G_n = zeros(Float64, size(g_2D)...) | |
667 G_n[:,end] = 2*g_x | |
668 G_n[:,end-1] = g_x | |
669 G_n[:,end-2] = 3*g_x | |
670 | |
671 @test op_w'*g_y == G_w | |
672 @test op_e'*g_y == G_e | |
673 @test op_s'*g_x == G_s | |
674 @test op_n'*g_x == G_n | |
675 end | |
676 | |
677 @testset "Regions" begin | |
678 u = fill(3.124) | |
679 @test (op_l'*u)[Index(1,Lower)] == 2*u[] | |
680 @test (op_l'*u)[Index(2,Lower)] == u[] | |
681 @test (op_l'*u)[Index(6,Interior)] == 0 | |
682 @test (op_l'*u)[Index(10,Upper)] == 0 | |
683 @test (op_l'*u)[Index(11,Upper)] == 0 | |
684 | |
685 @test (op_r'*u)[Index(1,Lower)] == 0 | |
686 @test (op_r'*u)[Index(2,Lower)] == 0 | |
687 @test (op_r'*u)[Index(6,Interior)] == 0 | |
688 @test (op_r'*u)[Index(10,Upper)] == u[] | |
689 @test (op_r'*u)[Index(11,Upper)] == 2*u[] | |
690 end | |
691 end | |
692 | |
693 @testset "Inferred" begin | |
694 v = ones(Float64, 11) | |
695 u = fill(1.) | |
696 | |
697 @inferred apply(op_l, v) | |
698 @inferred apply(op_r, v) | |
699 | |
700 @inferred apply_transpose(op_l, u, 4) | |
701 @inferred apply_transpose(op_l, u, Index(1,Lower)) | |
702 @inferred apply_transpose(op_l, u, Index(2,Lower)) | |
703 @inferred apply_transpose(op_l, u, Index(6,Interior)) | |
704 @inferred apply_transpose(op_l, u, Index(10,Upper)) | |
705 @inferred apply_transpose(op_l, u, Index(11,Upper)) | |
706 | |
707 @inferred apply_transpose(op_r, u, 4) | |
708 @inferred apply_transpose(op_r, u, Index(1,Lower)) | |
709 @inferred apply_transpose(op_r, u, Index(2,Lower)) | |
710 @inferred apply_transpose(op_r, u, Index(6,Interior)) | |
711 @inferred apply_transpose(op_r, u, Index(10,Upper)) | |
712 @inferred apply_transpose(op_r, u, Index(11,Upper)) | |
713 end | |
714 | |
715 end | |
716 | |
717 @testset "boundary_restriction" begin | |
718 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
719 g_1D = EquidistantGrid(11, 0.0, 1.0) | |
720 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) | |
721 | |
722 @testset "boundary_restriction" begin | |
723 @testset "1D" begin | |
724 e_l = boundary_restriction(g_1D,op.eClosure,Lower()) | |
725 @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) | |
726 @test e_l == BoundaryOperator(g_1D,op.eClosure,Lower()) | |
727 @test e_l isa BoundaryOperator{T,Lower} where T | |
728 @test e_l isa TensorMapping{T,0,1} where T | |
729 | |
730 e_r = boundary_restriction(g_1D,op.eClosure,Upper()) | |
731 @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) | |
732 @test e_r == BoundaryOperator(g_1D,op.eClosure,Upper()) | |
733 @test e_r isa BoundaryOperator{T,Upper} where T | |
734 @test e_r isa TensorMapping{T,0,1} where T | |
735 end | |
736 | |
737 @testset "2D" begin | |
738 e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) | |
739 @test e_w isa InflatedTensorMapping | |
740 @test e_w isa TensorMapping{T,1,2} where T | |
741 end | |
742 end | |
743 | |
744 @testset "Application" begin | |
745 @testset "1D" begin | |
746 e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) | |
747 e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) | |
748 | |
749 v = evalOn(g_1D,x->1+x^2) | |
750 u = fill(3.124) | |
751 | |
752 @test (e_l*v)[] == v[1] | |
753 @test (e_r*v)[] == v[end] | |
754 @test (e_r*v)[1] == v[end] | |
755 end | |
756 | |
757 @testset "2D" begin | |
758 e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) | |
759 e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) | |
760 e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) | |
761 e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) | |
762 | |
763 v = rand(11, 15) | |
764 u = fill(3.124) | |
765 | |
766 @test e_w*v == v[1,:] | |
767 @test e_e*v == v[end,:] | |
768 @test e_s*v == v[:,1] | |
769 @test e_n*v == v[:,end] | |
770 end | |
771 end | |
772 end | |
773 | |
774 @testset "normal_derivative" begin | |
775 g_1D = EquidistantGrid(11, 0.0, 1.0) | |
776 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | |
777 @testset "normal_derivative" begin | |
778 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
779 @testset "1D" begin | |
780 d_l = normal_derivative(g_1D, op.dClosure, Lower()) | |
781 @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) | |
782 @test d_l isa BoundaryOperator{T,Lower} where T | |
783 @test d_l isa TensorMapping{T,0,1} where T | |
784 end | |
785 @testset "2D" begin | |
786 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
787 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | |
788 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
789 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) | |
790 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) | |
791 d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) | |
792 d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) | |
793 @test d_w == d_l⊗Iy | |
794 @test d_n == Ix⊗d_r | |
795 @test d_w isa TensorMapping{T,1,2} where T | |
796 @test d_n isa TensorMapping{T,1,2} where T | |
797 end | |
798 end | |
799 @testset "Accuracy" begin | |
800 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | |
801 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) | |
802 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | |
803 # TODO: Test for higher order polynomials? | |
804 @testset "2nd order" begin | |
805 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
806 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | |
807 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) | |
808 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) | |
809 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
810 | |
811 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | |
812 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | |
813 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | |
814 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | |
815 end | |
816 | |
817 @testset "4th order" begin | |
818 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
819 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | |
820 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) | |
821 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) | |
822 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
823 | |
824 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | |
825 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | |
826 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | |
827 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | |
828 end | |
829 end | |
830 end | |
831 | |
832 end |