Mercurial > repos > public > sbplib_julia
view test/SbpOperators/testSbpOperators.jl @ 709:48a61e085e60 feature/selectable_tests
Add function for selecting tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 20 Feb 2021 20:31:08 +0100 |
parents | test/testSbpOperators.jl@5ddf28ddee18 |
children |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors using LinearAlgebra using TOML import Sbplib.SbpOperators.Stencil import Sbplib.SbpOperators.VolumeOperator import Sbplib.SbpOperators.volume_operator import Sbplib.SbpOperators.BoundaryOperator import Sbplib.SbpOperators.boundary_operator import Sbplib.SbpOperators.even import Sbplib.SbpOperators.odd @testset "SbpOperators" begin @testset "Stencil" begin s = Stencil((-2,2), (1.,2.,2.,3.,4.)) @test s isa Stencil{Float64, 5} @test eltype(s) == Float64 @test SbpOperators.scale(s, 2) == Stencil((-2,2), (2.,4.,4.,6.,8.)) @test Stencil(1,2,3,4; center=1) == Stencil((0, 3),(1,2,3,4)) @test Stencil(1,2,3,4; center=2) == Stencil((-1, 2),(1,2,3,4)) @test Stencil(1,2,3,4; center=4) == Stencil((-3, 0),(1,2,3,4)) @test CenteredStencil(1,2,3,4,5) == Stencil((-2, 2), (1,2,3,4,5)) @test_throws ArgumentError CenteredStencil(1,2,3,4) end @testset "parse_rational" begin @test SbpOperators.parse_rational("1") isa Rational @test SbpOperators.parse_rational("1") == 1//1 @test SbpOperators.parse_rational("1/2") isa Rational @test SbpOperators.parse_rational("1/2") == 1//2 @test SbpOperators.parse_rational("37/13") isa Rational @test SbpOperators.parse_rational("37/13") == 37//13 end @testset "readoperator" begin toml_str = """ [meta] type = "equidistant" [order2] H.inner = ["1"] D1.inner_stencil = ["-1/2", "0", "1/2"] D1.closure_stencils = [ ["-1", "1"], ] d1.closure = ["-3/2", "2", "-1/2"] [order4] H.closure = ["17/48", "59/48", "43/48", "49/48"] D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] D2.closure_stencils = [ [ "2", "-5", "4", "-1", "0", "0"], [ "1", "-2", "1", "0", "0", "0"], [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], ] """ parsed_toml = TOML.parse(toml_str) @testset "get_stencil" begin @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil") == Stencil(-1/2, 0., 1/2, center=2) @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=1) == Stencil(-1/2, 0., 1/2; center=1) @test get_stencil(parsed_toml, "order2", "D1", "inner_stencil", center=3) == Stencil(-1/2, 0., 1/2; center=3) @test get_stencil(parsed_toml, "order2", "H", "inner") == Stencil(1.; center=1) @test_throws AssertionError get_stencil(parsed_toml, "meta", "type") @test_throws AssertionError get_stencil(parsed_toml, "order2", "D1", "closure_stencils") end @testset "get_stencils" begin @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(1,)) == (Stencil(-1., 1., center=1),) @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=(2,)) == (Stencil(-1., 1., center=2),) @test get_stencils(parsed_toml, "order2", "D1", "closure_stencils", centers=[2]) == (Stencil(-1., 1., center=2),) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=[1,1,1,1]) == ( Stencil( 2., -5., 4., -1., 0., 0., center=1), Stencil( 1., -2., 1., 0., 0., 0., center=1), Stencil( -4/43, 59/43, -110/43, 59/43, -4/43, 0., center=1), Stencil( -1/49, 0., 59/49, -118/49, 64/49, -4/49, center=1), ) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(4,2,3,1)) == ( Stencil( 2., -5., 4., -1., 0., 0., center=4), Stencil( 1., -2., 1., 0., 0., 0., center=2), Stencil( -4/43, 59/43, -110/43, 59/43, -4/43, 0., center=3), Stencil( -1/49, 0., 59/49, -118/49, 64/49, -4/49, center=1), ) @test get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=1:4) == ( Stencil( 2., -5., 4., -1., 0., 0., center=1), Stencil( 1., -2., 1., 0., 0., 0., center=2), Stencil( -4/43, 59/43, -110/43, 59/43, -4/43, 0., center=3), Stencil( -1/49, 0., 59/49, -118/49, 64/49, -4/49, center=4), ) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3)) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "closure_stencils",centers=(1,2,3,5,4)) @test_throws AssertionError get_stencils(parsed_toml, "order4", "D2", "inner_stencil",centers=(1,2)) end @testset "get_tuple" begin @test get_tuple(parsed_toml, "order2", "d1", "closure") == (-3/2, 2, -1/2) @test_throws AssertionError get_tuple(parsed_toml, "meta", "type") end end @testset "VolumeOperator" begin inner_stencil = CenteredStencil(1/4, 2/4, 1/4) closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(0.,1.; center=2)) g_1D = EquidistantGrid(11,0.,1.) g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.)) g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.)) @testset "Constructors" begin @testset "1D" begin op = VolumeOperator(inner_stencil,closure_stencils,(11,),even) @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even) @test op == volume_operator(g_1D,inner_stencil,closure_stencils,even,1) @test op isa TensorMapping{T,1,1} where T end @testset "2D" begin op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) Ix = IdentityMapping{Float64}((11,)) Iy = IdentityMapping{Float64}((12,)) @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even) @test op_x isa TensorMapping{T,2,2} where T @test op_y isa TensorMapping{T,2,2} where T end @testset "3D" begin op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) Ix = IdentityMapping{Float64}((11,)) Iy = IdentityMapping{Float64}((12,)) Iz = IdentityMapping{Float64}((10,)) @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy⊗Iz @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)⊗Iz @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),even) @test op_x isa TensorMapping{T,3,3} where T @test op_y isa TensorMapping{T,3,3} where T @test op_z isa TensorMapping{T,3,3} where T end end @testset "Sizes" begin @testset "1D" begin op = volume_operator(g_1D,inner_stencil,closure_stencils,even,1) @test range_size(op) == domain_size(op) == size(g_1D) end @testset "2D" begin op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) @test range_size(op_y) == domain_size(op_y) == range_size(op_x) == domain_size(op_x) == size(g_2D) end @testset "3D" begin op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) @test range_size(op_z) == domain_size(op_z) == range_size(op_y) == domain_size(op_y) == range_size(op_x) == domain_size(op_x) == size(g_3D) end end op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2) v = zeros(size(g_2D)) Nx = size(g_2D)[1] Ny = size(g_2D)[2] for i = 1:Nx v[i,:] .= i end rx = copy(v) rx[1,:] .= 1.5 rx[Nx,:] .= (2*Nx-1)/2 ry = copy(v) ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny] @testset "Application" begin @test op_x*v ≈ rx rtol = 1e-14 @test op_y*v ≈ ry rtol = 1e-14 end @testset "Regions" begin @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14 @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14 @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14 @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14 @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14 @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)] @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)] @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14 @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14 @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)] @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)] end @testset "Inferred" begin @inferred apply(op_x, v,1,1) @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower)) @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower)) @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower)) @inferred apply(op_y, v,1,1) @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower)) @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior)) @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper)) end end @testset "SecondDerivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 3.5 Ly = 3. g_1D = EquidistantGrid(121, 0.0, Lx) g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) @testset "Constructors" begin @testset "1D" begin Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) @test Dₓₓ == second_derivative(g_1D,op.innerStencil,op.closureStencils,1) @test Dₓₓ isa VolumeOperator end @testset "2D" begin Dₓₓ = second_derivative(g_2D,op.innerStencil,op.closureStencils,1) D2 = second_derivative(g_1D,op.innerStencil,op.closureStencils) I = IdentityMapping{Float64}(size(g_2D)[2]) @test Dₓₓ == D2⊗I @test Dₓₓ isa TensorMapping{T,2,2} where T end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin @testset "1D" begin l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); monomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x) = 1/factorial(i)*x^i monomials = (monomials...,evalOn(g_1D,f_i)) end v = evalOn(g_1D,x -> sin(x)) vₓₓ = evalOn(g_1D,x -> -sin(x)) # 2nd order interior stencil, 1nd order boundary stencil, # implies that L*v should be exact for monomials up to order 2. @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for monomials up to order 3. @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 end end @testset "2D" begin l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); binomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y) = 1/factorial(i)*y^i + x^i binomials = (binomials...,evalOn(g_2D,f_i)) end v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) v_yy = evalOn(g_2D,(x,y) -> -cos(y)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 end end end end @testset "Laplace" begin g_1D = EquidistantGrid(101, 0.0, 1.) g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) @testset "Constructors" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin L = laplace(g_1D, op.innerStencil, op.closureStencils) @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) @test L isa TensorMapping{T,1,1} where T end @testset "3D" begin L = laplace(g_3D, op.innerStencil, op.closureStencils) @test L isa TensorMapping{T,3,3} where T Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) @test L == Dxx + Dyy + Dzz end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,evalOn(g_3D,f_i)) end v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) L = laplace(g_3D,op.innerStencil,op.closureStencils) @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = laplace(g_3D,op.innerStencil,op.closureStencils) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test L*v ≈ Δv rtol = 5e-4 norm = l2 end end end @testset "Diagonal-stencil inner_product" begin Lx = π/2. Ly = Float64(π) Lz = 1. g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz)) integral(H,v) = sum(H*v) @testset "inner_product" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "0D" begin H = inner_product(EquidistantGrid{Float64}(),op.quadratureClosure) @test H == IdentityMapping{Float64}() @test H isa TensorMapping{T,0,0} where T end @testset "1D" begin H = inner_product(g_1D,op.quadratureClosure) inner_stencil = CenteredStencil(1.) @test H == inner_product(g_1D,op.quadratureClosure,inner_stencil) @test H isa TensorMapping{T,1,1} where T end @testset "2D" begin H = inner_product(g_2D,op.quadratureClosure) H_x = inner_product(restrict(g_2D,1),op.quadratureClosure) H_y = inner_product(restrict(g_2D,2),op.quadratureClosure) @test H == H_x⊗H_y @test H isa TensorMapping{T,2,2} where T end end @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin H = inner_product(g_1D,op.quadratureClosure) @test domain_size(H) == size(g_1D) @test range_size(H) == size(g_1D) end @testset "2D" begin H = inner_product(g_2D,op.quadratureClosure) @test domain_size(H) == size(g_2D) @test range_size(H) == size(g_2D) end end @testset "Accuracy" begin @testset "1D" begin v = () for i = 0:4 f_i(x) = 1/factorial(i)*x^i v = (v...,evalOn(g_1D,f_i)) end u = evalOn(g_1D,x->sin(x)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = inner_product(g_1D,op.quadratureClosure) for i = 1:2 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @test integral(H,u) ≈ 1. rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = inner_product(g_1D,op.quadratureClosure) for i = 1:4 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @test integral(H,u) ≈ 1. rtol = 1e-8 end end @testset "2D" begin b = 2.1 v = b*ones(Float64, size(g_2D)) u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = inner_product(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = inner_product(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-8 end end end end @testset "Diagonal-stencil inverse_inner_product" begin Lx = π/2. Ly = Float64(π) g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) @testset "inverse_inner_product" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "0D" begin Hi = inverse_inner_product(EquidistantGrid{Float64}(),op.quadratureClosure) @test Hi == IdentityMapping{Float64}() @test Hi isa TensorMapping{T,0,0} where T end @testset "1D" begin Hi = inverse_inner_product(g_1D, op.quadratureClosure); inner_stencil = CenteredStencil(1.) closures = () for i = 1:length(op.quadratureClosure) closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) end @test Hi == inverse_inner_product(g_1D,closures,inner_stencil) @test Hi isa TensorMapping{T,1,1} where T end @testset "2D" begin Hi = inverse_inner_product(g_2D,op.quadratureClosure) Hi_x = inverse_inner_product(restrict(g_2D,1),op.quadratureClosure) Hi_y = inverse_inner_product(restrict(g_2D,2),op.quadratureClosure) @test Hi == Hi_x⊗Hi_y @test Hi isa TensorMapping{T,2,2} where T end end @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin Hi = inverse_inner_product(g_1D,op.quadratureClosure) @test domain_size(Hi) == size(g_1D) @test range_size(Hi) == size(g_1D) end @testset "2D" begin Hi = inverse_inner_product(g_2D,op.quadratureClosure) @test domain_size(Hi) == size(g_2D) @test range_size(Hi) == size(g_2D) end end @testset "Accuracy" begin @testset "1D" begin v = evalOn(g_1D,x->sin(x)) u = evalOn(g_1D,x->x^3-x^2+1) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = inner_product(g_1D,op.quadratureClosure) Hi = inverse_inner_product(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = inner_product(g_1D,op.quadratureClosure) Hi = inverse_inner_product(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end end @testset "2D" begin v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) H = inner_product(g_2D,op.quadratureClosure) Hi = inverse_inner_product(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) H = inner_product(g_2D,op.quadratureClosure) Hi = inverse_inner_product(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end end end end @testset "BoundaryOperator" begin closure_stencil = Stencil((0,2), (2.,1.,3.)) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "Constructors" begin @testset "1D" begin op_l = BoundaryOperator{Lower}(closure_stencil,size(g_1D)[1]) @test op_l == BoundaryOperator(g_1D,closure_stencil,Lower()) @test op_l == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Lower}()) @test op_l isa TensorMapping{T,0,1} where T op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) @test op_r == BoundaryOperator(g_1D,closure_stencil,Upper()) @test op_r == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Upper}()) @test op_r isa TensorMapping{T,0,1} where T end @testset "2D" begin e_w = boundary_operator(g_2D,closure_stencil,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end op_l = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Lower}()) op_r = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Upper}()) op_w = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Lower}()) op_e = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Upper}()) op_s = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Lower}()) op_n = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Upper}()) @testset "Sizes" begin @testset "1D" begin @test domain_size(op_l) == (11,) @test domain_size(op_r) == (11,) @test range_size(op_l) == () @test range_size(op_r) == () end @testset "2D" begin @test domain_size(op_w) == (11,15) @test domain_size(op_e) == (11,15) @test domain_size(op_s) == (11,15) @test domain_size(op_n) == (11,15) @test range_size(op_w) == (15,) @test range_size(op_e) == (15,) @test range_size(op_s) == (11,) @test range_size(op_n) == (11,) end end @testset "Application" begin @testset "1D" begin v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @test (op_l*v)[] == 2*v[1] + v[2] + 3*v[3] @test (op_r*v)[] == 2*v[end] + v[end-1] + 3*v[end-2] @test (op_r*v)[1] == 2*v[end] + v[end-1] + 3*v[end-2] @test op_l'*u == [2*u[]; u[]; 3*u[]; zeros(8)] @test op_r'*u == [zeros(8); 3*u[]; u[]; 2*u[]] end @testset "2D" begin v = rand(size(g_2D)...) u = fill(3.124) @test op_w*v ≈ 2*v[1,:] + v[2,:] + 3*v[3,:] rtol = 1e-14 @test op_e*v ≈ 2*v[end,:] + v[end-1,:] + 3*v[end-2,:] rtol = 1e-14 @test op_s*v ≈ 2*v[:,1] + v[:,2] + 3*v[:,3] rtol = 1e-14 @test op_n*v ≈ 2*v[:,end] + v[:,end-1] + 3*v[:,end-2] rtol = 1e-14 g_x = rand(size(g_2D)[1]) g_y = rand(size(g_2D)[2]) G_w = zeros(Float64, size(g_2D)...) G_w[1,:] = 2*g_y G_w[2,:] = g_y G_w[3,:] = 3*g_y G_e = zeros(Float64, size(g_2D)...) G_e[end,:] = 2*g_y G_e[end-1,:] = g_y G_e[end-2,:] = 3*g_y G_s = zeros(Float64, size(g_2D)...) G_s[:,1] = 2*g_x G_s[:,2] = g_x G_s[:,3] = 3*g_x G_n = zeros(Float64, size(g_2D)...) G_n[:,end] = 2*g_x G_n[:,end-1] = g_x G_n[:,end-2] = 3*g_x @test op_w'*g_y == G_w @test op_e'*g_y == G_e @test op_s'*g_x == G_s @test op_n'*g_x == G_n end @testset "Regions" begin u = fill(3.124) @test (op_l'*u)[Index(1,Lower)] == 2*u[] @test (op_l'*u)[Index(2,Lower)] == u[] @test (op_l'*u)[Index(6,Interior)] == 0 @test (op_l'*u)[Index(10,Upper)] == 0 @test (op_l'*u)[Index(11,Upper)] == 0 @test (op_r'*u)[Index(1,Lower)] == 0 @test (op_r'*u)[Index(2,Lower)] == 0 @test (op_r'*u)[Index(6,Interior)] == 0 @test (op_r'*u)[Index(10,Upper)] == u[] @test (op_r'*u)[Index(11,Upper)] == 2*u[] end end @testset "Inferred" begin v = ones(Float64, 11) u = fill(1.) @inferred apply(op_l, v) @inferred apply(op_r, v) @inferred apply_transpose(op_l, u, 4) @inferred apply_transpose(op_l, u, Index(1,Lower)) @inferred apply_transpose(op_l, u, Index(2,Lower)) @inferred apply_transpose(op_l, u, Index(6,Interior)) @inferred apply_transpose(op_l, u, Index(10,Upper)) @inferred apply_transpose(op_l, u, Index(11,Upper)) @inferred apply_transpose(op_r, u, 4) @inferred apply_transpose(op_r, u, Index(1,Lower)) @inferred apply_transpose(op_r, u, Index(2,Lower)) @inferred apply_transpose(op_r, u, Index(6,Interior)) @inferred apply_transpose(op_r, u, Index(10,Upper)) @inferred apply_transpose(op_r, u, Index(11,Upper)) end end @testset "boundary_restriction" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "boundary_restriction" begin @testset "1D" begin e_l = boundary_restriction(g_1D,op.eClosure,Lower()) @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) @test e_l == BoundaryOperator(g_1D,op.eClosure,Lower()) @test e_l isa BoundaryOperator{T,Lower} where T @test e_l isa TensorMapping{T,0,1} where T e_r = boundary_restriction(g_1D,op.eClosure,Upper()) @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_r == BoundaryOperator(g_1D,op.eClosure,Upper()) @test e_r isa BoundaryOperator{T,Upper} where T @test e_r isa TensorMapping{T,0,1} where T end @testset "2D" begin e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end @testset "Application" begin @testset "1D" begin e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @test (e_l*v)[] == v[1] @test (e_r*v)[] == v[end] @test (e_r*v)[1] == v[end] end @testset "2D" begin e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) v = rand(11, 15) u = fill(3.124) @test e_w*v == v[1,:] @test e_e*v == v[end,:] @test e_s*v == v[:,1] @test e_n*v == v[:,end] end end end @testset "normal_derivative" begin g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) @testset "normal_derivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin d_l = normal_derivative(g_1D, op.dClosure, Lower()) @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa TensorMapping{T,0,1} where T end @testset "2D" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) Ix = IdentityMapping{Float64}((size(g_2D)[1],)) Iy = IdentityMapping{Float64}((size(g_2D)[2],)) d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa TensorMapping{T,1,2} where T @test d_n isa TensorMapping{T,1,2} where T end end @testset "Accuracy" begin v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = evalOn(g_2D, (x,y)-> 2*x + y) v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) @test d_w*v ≈ v∂x[1,:] atol = 1e-13 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) @test d_w*v ≈ v∂x[1,:] atol = 1e-13 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 end end end end