Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 781:d2f4ac2be47f operator_storage_array_of_table
Fix derivatives tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 19 Jul 2021 20:10:31 +0200 |
parents | 6fb556b02f7c |
children | 2ae62dbaf839 |
comparison
equal
deleted
inserted
replaced
780:3b29b2ff1f0e | 781:d2f4ac2be47f |
---|---|
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 | 6 |
7 import Sbplib.SbpOperators.VolumeOperator | 7 import Sbplib.SbpOperators.VolumeOperator |
8 | 8 |
9 @testset "SecondDerivative" begin | 9 @testset "SecondDerivative" begin |
10 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 10 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
11 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | |
12 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
11 Lx = 3.5 | 13 Lx = 3.5 |
12 Ly = 3. | 14 Ly = 3. |
13 g_1D = EquidistantGrid(121, 0.0, Lx) | 15 g_1D = EquidistantGrid(121, 0.0, Lx) |
14 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) | 16 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) |
15 | 17 |
16 @testset "Constructors" begin | 18 @testset "Constructors" begin |
17 @testset "1D" begin | 19 @testset "1D" begin |
18 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | 20 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) |
19 @test Dₓₓ == second_derivative(g_1D,op.innerStencil,op.closureStencils,1) | 21 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils,1) |
20 @test Dₓₓ isa VolumeOperator | 22 @test Dₓₓ isa VolumeOperator |
21 end | 23 end |
22 @testset "2D" begin | 24 @testset "2D" begin |
23 Dₓₓ = second_derivative(g_2D,op.innerStencil,op.closureStencils,1) | 25 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) |
24 D2 = second_derivative(g_1D,op.innerStencil,op.closureStencils) | 26 D2 = second_derivative(g_1D,inner_stencil,closure_stencils) |
25 I = IdentityMapping{Float64}(size(g_2D)[2]) | 27 I = IdentityMapping{Float64}(size(g_2D)[2]) |
26 @test Dₓₓ == D2⊗I | 28 @test Dₓₓ == D2⊗I |
27 @test Dₓₓ isa TensorMapping{T,2,2} where T | 29 @test Dₓₓ isa TensorMapping{T,2,2} where T |
28 end | 30 end |
29 end | 31 end |
43 vₓₓ = evalOn(g_1D,x -> -sin(x)) | 45 vₓₓ = evalOn(g_1D,x -> -sin(x)) |
44 | 46 |
45 # 2nd order interior stencil, 1nd order boundary stencil, | 47 # 2nd order interior stencil, 1nd order boundary stencil, |
46 # implies that L*v should be exact for monomials up to order 2. | 48 # implies that L*v should be exact for monomials up to order 2. |
47 @testset "2nd order" begin | 49 @testset "2nd order" begin |
48 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
49 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | 51 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
52 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
53 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
50 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 54 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
51 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 55 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
52 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | 56 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 |
53 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 | 57 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 |
54 end | 58 end |
55 | 59 |
56 # 4th order interior stencil, 2nd order boundary stencil, | 60 # 4th order interior stencil, 2nd order boundary stencil, |
57 # implies that L*v should be exact for monomials up to order 3. | 61 # implies that L*v should be exact for monomials up to order 3. |
58 @testset "4th order" begin | 62 @testset "4th order" begin |
59 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 63 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
60 Dₓₓ = second_derivative(g_1D,op.innerStencil,op.closureStencils) | 64 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
65 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
66 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
61 # NOTE: high tolerances for checking the "exact" differentiation | 67 # NOTE: high tolerances for checking the "exact" differentiation |
62 # due to accumulation of round-off errors/cancellation errors? | 68 # due to accumulation of round-off errors/cancellation errors? |
63 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 69 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
64 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 70 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
65 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | 71 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 |
80 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) | 86 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) |
81 | 87 |
82 # 2nd order interior stencil, 1st order boundary stencil, | 88 # 2nd order interior stencil, 1st order boundary stencil, |
83 # implies that L*v should be exact for binomials up to order 2. | 89 # implies that L*v should be exact for binomials up to order 2. |
84 @testset "2nd order" begin | 90 @testset "2nd order" begin |
85 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 91 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
86 Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) | 92 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
93 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
94 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
87 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 95 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
88 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 96 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
89 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | 97 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 |
90 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 | 98 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 |
91 end | 99 end |
92 | 100 |
93 # 4th order interior stencil, 2nd order boundary stencil, | 101 # 4th order interior stencil, 2nd order boundary stencil, |
94 # implies that L*v should be exact for binomials up to order 3. | 102 # implies that L*v should be exact for binomials up to order 3. |
95 @testset "4th order" begin | 103 @testset "4th order" begin |
96 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 104 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
97 Dyy = second_derivative(g_2D,op.innerStencil,op.closureStencils,2) | 105 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
106 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
107 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
98 # NOTE: high tolerances for checking the "exact" differentiation | 108 # NOTE: high tolerances for checking the "exact" differentiation |
99 # due to accumulation of round-off errors/cancellation errors? | 109 # due to accumulation of round-off errors/cancellation errors? |
100 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 110 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
101 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 111 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
102 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | 112 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 |