comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1047:d12ab8120d29 feature/first_derivative

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 23 Mar 2022 12:43:03 +0100
parents 7fc8df5157a7
children b4ee47f2aafb 6530fceef37c
comparison
equal deleted inserted replaced
1046:e00eb000346e 1047:d12ab8120d29
1 """ 1 """
2 Laplace{T, Dim, TM} <: TensorMapping{T, Dim, Dim} 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim}
3 3
4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a
5 `TensorMapping`. Additionally `Laplace` stores the stencil set (parsed from TOML) 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet`
6 used to construct the `TensorMapping`. 6 used to construct the `LazyTensor `.
7 """ 7 """
8 struct Laplace{T, Dim, TM<:TensorMapping{T, Dim, Dim}} <: TensorMapping{T, Dim, Dim} 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim}
9 D::TM # Difference operator 9 D::TM # Difference operator
10 stencil_set # Stencil set of the operator 10 stencil_set::StencilSet # Stencil set of the operator
11 end 11 end
12 12
13 """ 13 """
14 Laplace(grid::Equidistant, stencil_set) 14 Laplace(grid::Equidistant, stencil_set)
15 15
16 Creates the `Laplace` operator `Δ` on `grid` given a parsed TOML 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`.
17 `stencil_set`. See also [`laplace`](@ref). 17
18 See also [`laplace`](@ref).
18 """ 19 """
19 function Laplace(grid::EquidistantGrid, stencil_set) 20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet)
20 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
21 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) 22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
22 Δ = laplace(grid, inner_stencil,closure_stencils) 23 Δ = laplace(grid, inner_stencil,closure_stencils)
23 return Laplace(Δ,stencil_set) 24 return Laplace(Δ,stencil_set)
24 end 25 end
25 26
26 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) 27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D)
27 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) 28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D)
28 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) 29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...)
29 30
30 # TODO: Implement pretty printing of Laplace once pretty printing of TensorMappings is implemented. 31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented.
31 # Base.show(io::IO, L::Laplace) = ... 32 # Base.show(io::IO, L::Laplace) = ...
32 33
33 """ 34 """
34 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) 35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils)
35 36
36 Creates the Laplace operator operator `Δ` as a `TensorMapping` 37 Creates the Laplace operator operator `Δ` as a `LazyTensor`
37 38
38 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using 39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using
39 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` 40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils`
40 for the points in the closure regions. 41 for the points in the closure regions.
41 42