comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 618:c64793f77509 feature/volume_and_boundary_operators

Move Laplace and SecondDerivative into the volumeops directory
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 07 Dec 2020 12:16:09 +0100
parents src/SbpOperators/laplace/laplace.jl@d9324671b412
children a85db383484f
comparison
equal deleted inserted replaced
617:f59e1732eacc 618:c64793f77509
1 # """
2 # Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
3 #
4 # Implements the Laplace operator `L` in Dim dimensions as a tensor operator
5 # The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative
6 # tensor operators.
7 # """
8 function Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) where Dim
9 Δ = SecondDerivative(grid, inner_stencil, closure_stencils, 1)
10 for d = 2:Dim
11 Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d)
12 end
13 return Δ
14 end
15 export Laplace
16
17 # quadrature(L::Laplace) = Quadrature(L.op, L.grid)
18 # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
19 # boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
20 # normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
21 # boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
22 # export NormalDerivative
23 # """
24 # NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
25 #
26 # Implements the boundary operator `d` as a TensorMapping
27 # """
28 # struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1}
29 # op::D2{T,N,M,K}
30 # grid::EquidistantGrid{2}
31 # bId::CartesianBoundary
32 # end
33 #
34 # # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue?
35 # # Can we give special treatment to TensorMappings that go to a higher dim?
36 # function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer})
37 # if dim(e.bId) == 1
38 # return (UnknownDim, domain_size[1])
39 # elseif dim(e.bId) == 2
40 # return (domain_size[1], UnknownDim)
41 # end
42 # end
43 # LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],)
44 #
45 # # TODO: Not type stable D:<
46 # # TODO: Make this independent of dimension
47 # function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T
48 # i = I[dim(d.bId)]
49 # j = I[3-dim(d.bId)]
50 # N_i = size(d.grid)[dim(d.bId)]
51 # h_inv = inverse_spacing(d.grid)[dim(d.bId)]
52 # return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId))
53 # end
54 #
55 # function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T
56 # u = selectdim(v,3-dim(d.bId),Int(I[1]))
57 # return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId))
58 # end
59 #
60 # """
61 # BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
62 #
63 # Implements the boundary operator `q` as a TensorOperator
64 # """
65 # export BoundaryQuadrature
66 # struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
67 # op::D2{T,N,M,K}
68 # grid::EquidistantGrid{2}
69 # bId::CartesianBoundary
70 # end
71 #
72 #
73 # # TODO: Make this independent of dimension
74 # function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
75 # h = spacing(q.grid)[3-dim(q.bId)]
76 # N = size(v)
77 # return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
78 # end
79 #
80 # LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
81 #
82 #
83 #
84 #
85 # struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
86 #
87 # function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
88 # e = boundary_value(L, Bid())
89 # d = normal_derivative(L, Bid())
90 # Hᵧ = boundary_quadrature(L, Bid())
91 # H⁻¹ = inverse_quadrature(L)
92 # return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
93 # end
94 #
95 # struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
96 # tau::Float64
97 # end
98 #
99 # function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
100 # e = boundary_value(L, Bid())
101 # d = normal_derivative(L, Bid())
102 # Hᵧ = boundary_quadrature(L, Bid())
103 # H⁻¹ = inverse_quadrature(L)
104 # return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
105 # # Need to handle scalar multiplication and addition of TensorMapping
106 # end
107
108 # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
109 # return apply(s.L, v, i) +
110 # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) +
111 # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) +
112 # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) +
113 # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i)
114 # end