Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/InverseQuadrature.jl @ 305:bd09d67ebb22
Fix type errors in InverseQuadrature
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:00:56 +0200 |
parents | 6fa2ba769ae3 |
children | 777063b6f049 |
comparison
equal
deleted
inserted
replaced
302:6fa2ba769ae3 | 305:bd09d67ebb22 |
---|---|
1 """ | 1 """ |
2 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | 2 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} |
3 | 3 |
4 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator | 4 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator |
5 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm | 5 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm |
6 tensor operators. | 6 tensor operators. |
7 """ | 7 """ |
8 struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} | 8 export InverseQuadrature |
9 struct InverseQuadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} | |
9 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} | 10 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} |
10 end | 11 end |
11 export Quadrature | |
12 | 12 |
13 LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size | 13 LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size |
14 | 14 |
15 function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} | 15 function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} |
16 error("not implemented") | 16 error("not implemented") |
17 end | 17 end |
18 | 18 |
19 LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) | 19 LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) |
20 | 20 |
21 @inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 21 @inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T |
22 @inbounds q = apply(Qi.Hi[1], v , I[1]) | 22 @inbounds q = apply(Qi.Hi[1], v , I[1]) |
23 return q | 23 return q |
24 end | 24 end |
25 | 25 |
26 @inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T | 26 @inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T |
27 # Quadrature in x direction | 27 # InverseQuadrature in x direction |
28 @inbounds vx = view(v, :, Int(I[2])) | 28 @inbounds vx = view(v, :, Int(I[2])) |
29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) | 29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) |
30 # Quadrature in y-direction | 30 # InverseQuadrature in y-direction |
31 @inbounds vy = view(v, Int(I[1]), :) | 31 @inbounds vy = view(v, Int(I[1]), :) |
32 @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) | 32 @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) |
33 return qx_inv*qy_inv | 33 return qx_inv*qy_inv |
34 end | 34 end |
35 | 35 |
36 """ | 36 """ |
37 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | 37 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} |
38 | 38 |
39 Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping | 39 Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping |
40 """ | 40 """ |
41 export InverseDiagonalNorm, closuresize | |
41 struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} | 42 struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} |
42 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? | 43 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? |
43 closure::NTuple{M,T} | 44 closure::NTuple{M,T} |
44 #TODO: Write a nice constructor | 45 #TODO: Write a nice constructor |
45 end | 46 end |
46 | 47 |
47 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 48 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T |
48 return @inbounds apply(Hi, v, I[1]) | 49 return @inbounds apply(Hi, v, I[1]) |
49 end | 50 end |
50 | 51 |
51 LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) | 52 LazyTensors.apply_transpose(Hi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) |
52 | 53 |
53 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T | 54 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T |
54 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] | 55 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] |
55 end | 56 end |
56 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T | 57 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T |