comparison SbpOperators/src/InverseQuadrature.jl @ 305:bd09d67ebb22

Fix type errors in InverseQuadrature
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 09 Sep 2020 21:00:56 +0200
parents 6fa2ba769ae3
children 777063b6f049
comparison
equal deleted inserted replaced
302:6fa2ba769ae3 305:bd09d67ebb22
1 """ 1 """
2 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} 2 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
3 3
4 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator 4 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator
5 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm 5 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm
6 tensor operators. 6 tensor operators.
7 """ 7 """
8 struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} 8 export InverseQuadrature
9 struct InverseQuadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
9 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} 10 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}}
10 end 11 end
11 export Quadrature
12 12
13 LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size 13 LazyTensors.domain_size(Qi::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
14 14
15 function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} 15 function LazyTensors.apply(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim}
16 error("not implemented") 16 error("not implemented")
17 end 17 end
18 18
19 LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) 19 LazyTensors.apply_transpose(Qi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I)
20 20
21 @inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T 21 @inline function LazyTensors.apply(Qi::InverseQuadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
22 @inbounds q = apply(Qi.Hi[1], v , I[1]) 22 @inbounds q = apply(Qi.Hi[1], v , I[1])
23 return q 23 return q
24 end 24 end
25 25
26 @inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T 26 @inline function LazyTensors.apply(Qi::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T
27 # Quadrature in x direction 27 # InverseQuadrature in x direction
28 @inbounds vx = view(v, :, Int(I[2])) 28 @inbounds vx = view(v, :, Int(I[2]))
29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) 29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1])
30 # Quadrature in y-direction 30 # InverseQuadrature in y-direction
31 @inbounds vy = view(v, Int(I[1]), :) 31 @inbounds vy = view(v, Int(I[1]), :)
32 @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) 32 @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2])
33 return qx_inv*qy_inv 33 return qx_inv*qy_inv
34 end 34 end
35 35
36 """ 36 """
37 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} 37 InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
38 38
39 Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping 39 Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping
40 """ 40 """
41 export InverseDiagonalNorm, closuresize
41 struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} 42 struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
42 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? 43 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable?
43 closure::NTuple{M,T} 44 closure::NTuple{M,T}
44 #TODO: Write a nice constructor 45 #TODO: Write a nice constructor
45 end 46 end
46 47
47 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T 48 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
48 return @inbounds apply(Hi, v, I[1]) 49 return @inbounds apply(Hi, v, I[1])
49 end 50 end
50 51
51 LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) 52 LazyTensors.apply_transpose(Hi::InverseQuadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I)
52 53
53 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T 54 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T
54 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] 55 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)]
55 end 56 end
56 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T 57 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T