Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/laplace/secondderivative.jl @ 328:9cc5d1498b2d
Refactor 1D diagonal inner product in quadrature.jl to separate file. Write tests for quadratures. Clean up laplace and secondderivative
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 24 Sep 2020 22:31:48 +0200 |
parents | f2d6ec89dfc5 |
children |
comparison
equal
deleted
inserted
replaced
327:802edc9f252e | 328:9cc5d1498b2d |
---|---|
18 #TODO: The 1D tensor mappings should not have to dispatch on 1D tuples if we write LazyTensor.apply for vararg right?!?! | 18 #TODO: The 1D tensor mappings should not have to dispatch on 1D tuples if we write LazyTensor.apply for vararg right?!?! |
19 # Currently have to index the Tuple{Index} in each method in order to call the stencil methods which is ugly. | 19 # Currently have to index the Tuple{Index} in each method in order to call the stencil methods which is ugly. |
20 # I thought I::Vararg{Index,R} fell back to just Index for R = 1 | 20 # I thought I::Vararg{Index,R} fell back to just Index for R = 1 |
21 | 21 |
22 # Apply for different regions Lower/Interior/Upper or Unknown region | 22 # Apply for different regions Lower/Interior/Upper or Unknown region |
23 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T | 23 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T |
24 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) | 24 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) |
25 end | 25 end |
26 | 26 |
27 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T | 27 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T |
28 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) | 28 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) |
29 end | 29 end |
30 | 30 |
31 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T | 31 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T |
32 N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) | 32 N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) |
33 return @inbounds D2.h_inv*D2.h_inv*Int(D2.parity)*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) | 33 return @inbounds D2.h_inv*D2.h_inv*Int(D2.parity)*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) |
34 end | 34 end |
35 | 35 |
36 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T | 36 function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T |
37 N = length(v) # TODO: Use domain_size here instead? | 37 N = length(v) # TODO: Use domain_size here instead? |
38 r = getregion(Int(index), closuresize(D2), N) | 38 r = getregion(Int(index), closuresize(D2), N) |
39 I = Index(Int(index), r) | 39 I = Index(Int(index), r) |
40 return LazyTensors.apply(D2, v, I) | 40 return LazyTensors.apply(D2, v, I) |
41 end | 41 end |
42 | 42 |
43 LazyTensors.apply_transpose(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index) where {T} = LazyTensors.apply(D2, v, I) | |
43 | 44 |
44 @inline function LazyTensors.apply_transpose(D2::SecondDerivative, v::AbstractVector, I::Index) | 45 closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M |
45 return LazyTensors.apply(D2, v, I) | |
46 end | |
47 | |
48 | |
49 function closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} | |
50 return M | |
51 end |