Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl @ 558:9b5710ae6587 feature/quadrature_as_outer_product
Update documentation
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 29 Nov 2020 22:06:53 +0100 |
parents | 3c18a15934a7 |
children | 04d7b4eb63ef |
comparison
equal
deleted
inserted
replaced
557:3c18a15934a7 | 558:9b5710ae6587 |
---|---|
1 """ | 1 """ |
2 inverse_diagonal_quadrature(g,quadrature_closure) | 2 inverse_diagonal_quadrature(g,quadrature_closure) |
3 | 3 |
4 Constructs the diagonal quadrature inverse operator `Hi` on a grid of `Dim` dimensions as | 4 Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as |
5 a `TensorMapping`. The one-dimensional operator is a InverseDiagonalQuadrature, while | 5 a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while |
6 the multi-dimensional operator is the outer-product of the one-dimensional operators | 6 the multi-dimensional operator is the outer-product of the one-dimensional operators |
7 in each coordinate direction. | 7 in each coordinate direction. |
8 """ | 8 """ |
9 function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim | 9 function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim |
10 Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure) | 10 Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure) |
17 | 17 |
18 | 18 |
19 """ | 19 """ |
20 InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1} | 20 InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1} |
21 | 21 |
22 Implements the one-dimensional inverse diagonal quadrature operator as a `TensorMapping | 22 Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping` |
23 TODO: Elaborate on properties | 23 The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the |
24 reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The | |
25 interior stencil has the weight 1. | |
24 """ | 26 """ |
25 struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1} | 27 struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1} |
26 h_inv::T | 28 h_inv::T |
27 closure::NTuple{M,T} | 29 closure::NTuple{M,T} |
28 size::Tuple{Int} | 30 size::Tuple{Int} |
29 end | 31 end |
30 export InverseDiagonalQuadrature | 32 export InverseDiagonalQuadrature |
31 | 33 |
34 """ | |
35 InverseDiagonalQuadrature(g, quadrature_closure) | |
36 | |
37 Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with | |
38 closure given by the reciprocal of `quadrature_closure`. | |
39 """ | |
32 function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) | 40 function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) |
33 return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g)) | 41 return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g)) |
34 end | 42 end |
35 | 43 |
44 """ | |
45 domain_size(Hi::InverseDiagonalQuadrature) | |
36 | 46 |
47 The size of an object in the range of `Hi` | |
48 """ | |
37 LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size | 49 LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size |
50 | |
51 """ | |
52 domain_size(Hi::InverseDiagonalQuadrature) | |
53 | |
54 The size of an object in the domain of `Hi` | |
55 """ | |
38 LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size | 56 LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size |
39 | 57 |
40 | 58 """ |
59 apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T | |
60 Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions | |
61 `Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first | |
62 be converted to an `Index{R}`. | |
63 """ | |
41 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T | 64 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T |
42 return @inbounds Hi.h_inv*Hi.closure[Int(I)]*v[Int(I)] | 65 return @inbounds Hi.h_inv*Hi.closure[Int(I)]*v[Int(I)] |
43 end | 66 end |
44 | 67 |
45 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Upper}) where T | 68 function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Upper}) where T |
58 end | 81 end |
59 | 82 |
60 LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i) | 83 LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i) |
61 | 84 |
62 """ | 85 """ |
63 closure_size(H) | 86 closure_size(Hi) |
64 Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`. | 87 Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`. |
65 """ | 88 """ |
66 closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M | 89 closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M |