Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1606:93b86625fcfd feature/boundary_conditions
REVIEW: Suggest split of tuning tuple. Please help with names!
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Sat, 08 Jun 2024 23:47:23 +0200 |
| parents | fca4a01d60c9 |
| children | 7216448d0c5a |
comparison
equal
deleted
inserted
replaced
| 1605:1388149b54ad | 1606:93b86625fcfd |
|---|---|
| 60 The operators required to construct the SAT for imposing a Dirichlet condition. | 60 The operators required to construct the SAT for imposing a Dirichlet condition. |
| 61 `tuning` specifies the strength of the penalty. See | 61 `tuning` specifies the strength of the penalty. See |
| 62 | 62 |
| 63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). | 63 See also: [`sat`,`DirichletCondition`, `positivity_decomposition`](@ref). |
| 64 """ | 64 """ |
| 65 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; tuning = (1., 1.)) | 65 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) |
| 66 id = boundary(bc) | 66 id = boundary(bc) |
| 67 set = Δ.stencil_set | 67 set = Δ.stencil_set |
| 68 H⁻¹ = inverse_inner_product(g,set) | 68 H⁻¹ = inverse_inner_product(g,set) |
| 69 Hᵧ = inner_product(boundary_grid(g, id), set) | 69 Hᵧ = inner_product(boundary_grid(g, id), set) |
| 70 e = boundary_restriction(g, set, id) | 70 e = boundary_restriction(g, set, id) |
| 71 d = normal_derivative(g, set, id) | 71 d = normal_derivative(g, set, id) |
| 72 B = positivity_decomposition(Δ, g, bc, tuning) | 72 B = positivity_decomposition(Δ, g, bc; H_tuning, R_tuning) |
| 73 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ | 73 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ |
| 74 return penalty_tensor, e | 74 return penalty_tensor, e |
| 75 end | 75 end |
| 76 | 76 |
| 77 """ | 77 """ |
| 95 end | 95 end |
| 96 | 96 |
| 97 # TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then | 97 # TODO: We should consider implementing a proper BoundaryIdentifier for EquidistantGrid and then |
| 98 # change bc::BoundaryCondition to id::BoundaryIdentifier | 98 # change bc::BoundaryCondition to id::BoundaryIdentifier |
| 99 | 99 |
| 100 function positivity_decomposition(Δ::Laplace, g::EquidistantGrid, bc::BoundaryCondition, tuning) | 100 function positivity_decomposition(Δ::Laplace, g::EquidistantGrid, bc::BoundaryCondition; H_tuning, R_tuning) |
| 101 pos_prop = positivity_properties(Δ) | 101 pos_prop = positivity_properties(Δ) |
| 102 h = spacing(g) | 102 h = spacing(g) |
| 103 θ_H = pos_prop.theta_H | 103 θ_H = pos_prop.theta_H |
| 104 τ_H = tuning[1]*ndims(g)/(h*θ_H) | 104 τ_H = H_tuning*ndims(g)/(h*θ_H) |
| 105 θ_R = pos_prop.theta_R | 105 θ_R = pos_prop.theta_R |
| 106 τ_R = tuning[2]/(h*θ_R) | 106 τ_R = R_tuning/(h*θ_R) |
| 107 B = τ_H + τ_R | 107 B = τ_H + τ_R |
| 108 return B | 108 return B |
| 109 end | 109 end |
| 110 | 110 |
| 111 function positivity_decomposition(Δ::Laplace, g::TensorGrid, bc::BoundaryCondition, tuning) | 111 function positivity_decomposition(Δ::Laplace, g::TensorGrid, bc::BoundaryCondition; H_tuning, R_tuning) |
| 112 pos_prop = positivity_properties(Δ) | 112 pos_prop = positivity_properties(Δ) |
| 113 h = spacing(g.grids[grid_id(boundary(bc))]) # grid spacing of the 1D grid normal to the boundary | 113 h = spacing(g.grids[grid_id(boundary(bc))]) # grid spacing of the 1D grid normal to the boundary |
| 114 θ_H = pos_prop.theta_H | 114 θ_H = pos_prop.theta_H |
| 115 τ_H = tuning[1]*ndims(g)/(h*θ_H) | 115 τ_H = H_tuning*ndims(g)/(h*θ_H) |
| 116 θ_R = pos_prop.theta_R | 116 θ_R = pos_prop.theta_R |
| 117 τ_R = tuning[2]/(h*θ_R) | 117 τ_R = R_tuning/(h*θ_R) |
| 118 B = τ_H + τ_R | 118 B = τ_H + τ_R |
| 119 return B | 119 return B |
| 120 end | 120 end |
| 121 | 121 |
| 122 function positivity_properties(Δ::Laplace) | 122 function positivity_properties(Δ::Laplace) |
