Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 2057:8a2a0d678d6f feature/lazy_tensors/pretty_printing
Merge default
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Tue, 10 Feb 2026 22:41:19 +0100 |
| parents | b5690ab5f0b8 |
| children | f3d7e2d7a43f |
comparison
equal
deleted
inserted
replaced
| 1110:c0bff9f6e0fb | 2057:8a2a0d678d6f |
|---|---|
| 1 """ | 1 """ |
| 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} | 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} |
| 3 | 3 |
| 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a | 4 The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a |
| 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` | 5 `LazyTensor`. |
| 6 used to construct the `LazyTensor `. | |
| 7 """ | 6 """ |
| 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} | 7 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} |
| 9 D::TM # Difference operator | 8 D::TM # Difference operator |
| 10 stencil_set::StencilSet # Stencil set of the operator | 9 stencil_set::StencilSet # Stencil set of the operator |
| 11 end | 10 end |
| 12 | 11 |
| 13 """ | 12 """ |
| 14 Laplace(grid::Equidistant, stencil_set) | 13 Laplace(g::Grid, stencil_set::StencilSet) |
| 15 | 14 |
| 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. | 15 Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. |
| 17 | 16 |
| 18 See also [`laplace`](@ref). | 17 See also [`laplace`](@ref). |
| 19 """ | 18 """ |
| 20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) | 19 function Laplace(g::Grid, stencil_set::StencilSet) |
| 21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 20 Δ = laplace(g, stencil_set) |
| 22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | 21 return Laplace(Δ, stencil_set) |
| 23 Δ = laplace(grid, inner_stencil,closure_stencils) | |
| 24 return Laplace(Δ,stencil_set) | |
| 25 end | 22 end |
| 26 | 23 |
| 27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) | 24 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) |
| 28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) | 25 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) |
| 29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) | 26 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) |
| 30 | 27 |
| 31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. | 28 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. |
| 32 # Base.show(io::IO, L::Laplace) = ... | 29 # Base.show(io::IO, L::Laplace) = ... |
| 33 | 30 |
| 34 """ | 31 """ |
| 35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 32 laplace(g::Grid, stencil_set) |
| 36 | 33 |
| 37 Creates the Laplace operator operator `Δ` as a `LazyTensor` | 34 Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. |
| 38 | 35 |
| 39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using | 36 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The |
| 40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` | 37 approximation depends on the type of grid and the stencil set. |
| 41 for the points in the closure regions. | |
| 42 | |
| 43 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a | |
| 44 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s | |
| 45 where the sum is carried out lazily. | |
| 46 | 38 |
| 47 See also: [`second_derivative`](@ref). | 39 See also: [`second_derivative`](@ref). |
| 48 """ | 40 """ |
| 49 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 41 function laplace end |
| 50 Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) | 42 function laplace(g::TensorGrid, stencil_set) |
| 51 for d = 2:dimension(grid) | 43 # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) |
| 52 Δ += second_derivative(grid, inner_stencil, closure_stencils, d) | 44 # Δᵢ = laplace(gᵢ, stencil_set) |
| 45 # LazyTensors.inflate(Δᵢ, size(g), i) | |
| 46 # end | |
| 47 | |
| 48 Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) | |
| 49 for d = 2:ndims(g) | |
| 50 Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) | |
| 53 end | 51 end |
| 54 return Δ | 52 return Δ |
| 55 end | 53 end |
| 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) | |
| 55 | |
| 56 """ | |
| 57 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) | |
| 58 | |
| 59 The operators required to construct the SAT for imposing a Dirichlet | |
| 60 condition. `H_tuning` and `R_tuning` are used to specify the strength of the | |
| 61 penalty. | |
| 62 | |
| 63 See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). | |
| 64 """ | |
| 65 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) | |
| 66 id = boundary(bc) | |
| 67 set = Δ.stencil_set | |
| 68 H⁻¹ = inverse_inner_product(g,set) | |
| 69 Hᵧ = inner_product(boundary_grid(g, id), set) | |
| 70 e = boundary_restriction(g, set, id) | |
| 71 d = normal_derivative(g, set, id) | |
| 72 B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) | |
| 73 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ | |
| 74 return penalty_tensor, e | |
| 75 end | |
| 76 | |
| 77 """ | |
| 78 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | |
| 79 | |
| 80 The operators required to construct the SAT for imposing a Neumann condition. | |
| 81 | |
| 82 See also: [`sat`](@ref), [`NeumannCondition`](@ref). | |
| 83 """ | |
| 84 function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | |
| 85 id = boundary(bc) | |
| 86 set = Δ.stencil_set | |
| 87 H⁻¹ = inverse_inner_product(g,set) | |
| 88 Hᵧ = inner_product(boundary_grid(g, id), set) | |
| 89 e = boundary_restriction(g, set, id) | |
| 90 d = normal_derivative(g, set, id) | |
| 91 | |
| 92 penalty_tensor = -H⁻¹∘e'∘Hᵧ | |
| 93 return penalty_tensor, d | |
| 94 end | |
| 95 | |
| 96 """ | |
| 97 positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) | |
| 98 | |
| 99 Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive | |
| 100 definite with respect to the boundary quadrature. Here `d` is the normal | |
| 101 derivative and `e` is the boundary restriction operator. `B` can then be used | |
| 102 to form a symmetric and energy stable penalty for a Dirichlet condition. The | |
| 103 parameters `H_tuning` and `R_tuning` are used to specify the strength of the | |
| 104 penalty and must be greater than 1. For details we refer to | |
| 105 <https://doi.org/10.1016/j.jcp.2020.109294> | |
| 106 """ | |
| 107 function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) | |
| 108 @assert(H_tuning ≥ 1.) | |
| 109 @assert(R_tuning ≥ 1.) | |
| 110 Nτ_H, τ_R = positivity_limits(Δ,g,b) | |
| 111 return H_tuning*Nτ_H + R_tuning*τ_R | |
| 112 end | |
| 113 | |
| 114 function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) | |
| 115 h = spacing(g) | |
| 116 θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) | |
| 117 θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) | |
| 118 | |
| 119 τ_H = one(eltype(Δ))/(h*θ_H) | |
| 120 τ_R = one(eltype(Δ))/(h*θ_R) | |
| 121 return τ_H, τ_R | |
| 122 end | |
| 123 | |
| 124 function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) | |
| 125 τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) | |
| 126 return τ_H*ndims(g), τ_R | |
| 127 end |
