comparison test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 1040:7fc8df5157a7 refactor/lazy_tensors

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 22 Mar 2022 14:23:55 +0100
parents 1ba8a398af9c 5ec49dd2c7c4
children f1bb1b6d85dd
comparison
equal deleted inserted replaced
1037:9e76bf19904c 1040:7fc8df5157a7
19 @testset "Constructors" begin 19 @testset "Constructors" begin
20 @testset "1D" begin 20 @testset "1D" begin
21 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils,1) 21 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils,1)
22 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils) 22 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils)
23 @test Dₓₓ == second_derivative(g_1D,stencil_set,1) 23 @test Dₓₓ == second_derivative(g_1D,stencil_set,1)
24 @test Dₓₓ == second_derivative(g_1D,stencil_set)
24 @test Dₓₓ isa VolumeOperator 25 @test Dₓₓ isa VolumeOperator
25 end 26 end
26 @testset "2D" begin 27 @testset "2D" begin
27 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) 28 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1)
28 D2 = second_derivative(g_1D,inner_stencil,closure_stencils) 29 D2 = second_derivative(g_1D,inner_stencil,closure_stencils,1)
29 I = IdentityTensor{Float64}(size(g_2D)[2]) 30 I = IdentityTensor{Float64}(size(g_2D)[2])
30 @test Dₓₓ == D2⊗I 31 @test Dₓₓ == D2⊗I
31 @test Dₓₓ == second_derivative(g_2D,stencil_set,1) 32 @test Dₓₓ == second_derivative(g_2D,stencil_set,1)
32 @test Dₓₓ isa LazyTensor{T,2,2} where T 33 @test Dₓₓ isa LazyTensor{T,2,2} where T
33 end 34 end
49 50
50 # 2nd order interior stencil, 1nd order boundary stencil, 51 # 2nd order interior stencil, 1nd order boundary stencil,
51 # implies that L*v should be exact for monomials up to order 2. 52 # implies that L*v should be exact for monomials up to order 2.
52 @testset "2nd order" begin 53 @testset "2nd order" begin
53 stencil_set = read_stencil_set(operator_path; order=2) 54 stencil_set = read_stencil_set(operator_path; order=2)
54 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 55 Dₓₓ = second_derivative(g_1D,stencil_set)
55 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
56 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils)
57 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 56 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10
58 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 57 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10
59 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 58 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10
60 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 59 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2
61 end 60 end
62 61
63 # 4th order interior stencil, 2nd order boundary stencil, 62 # 4th order interior stencil, 2nd order boundary stencil,
64 # implies that L*v should be exact for monomials up to order 3. 63 # implies that L*v should be exact for monomials up to order 3.
65 @testset "4th order" begin 64 @testset "4th order" begin
66 stencil_set = read_stencil_set(operator_path; order=4) 65 stencil_set = read_stencil_set(operator_path; order=4)
67 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 66 Dₓₓ = second_derivative(g_1D,stencil_set)
68 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
69 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils)
70 # NOTE: high tolerances for checking the "exact" differentiation 67 # NOTE: high tolerances for checking the "exact" differentiation
71 # due to accumulation of round-off errors/cancellation errors? 68 # due to accumulation of round-off errors/cancellation errors?
72 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 69 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10
73 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 70 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10
74 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 71 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10
90 87
91 # 2nd order interior stencil, 1st order boundary stencil, 88 # 2nd order interior stencil, 1st order boundary stencil,
92 # implies that L*v should be exact for binomials up to order 2. 89 # implies that L*v should be exact for binomials up to order 2.
93 @testset "2nd order" begin 90 @testset "2nd order" begin
94 stencil_set = read_stencil_set(operator_path; order=2) 91 stencil_set = read_stencil_set(operator_path; order=2)
95 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 92 Dyy = second_derivative(g_2D,stencil_set,2)
96 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
97 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2)
98 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 93 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9
99 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 94 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9
100 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 95 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9
101 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 96 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2
102 end 97 end
103 98
104 # 4th order interior stencil, 2nd order boundary stencil, 99 # 4th order interior stencil, 2nd order boundary stencil,
105 # implies that L*v should be exact for binomials up to order 3. 100 # implies that L*v should be exact for binomials up to order 3.
106 @testset "4th order" begin 101 @testset "4th order" begin
107 stencil_set = read_stencil_set(operator_path; order=4) 102 stencil_set = read_stencil_set(operator_path; order=4)
108 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 103 Dyy = second_derivative(g_2D,stencil_set,2)
109 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
110 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2)
111 # NOTE: high tolerances for checking the "exact" differentiation 104 # NOTE: high tolerances for checking the "exact" differentiation
112 # due to accumulation of round-off errors/cancellation errors? 105 # due to accumulation of round-off errors/cancellation errors?
113 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 106 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9
114 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 107 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9
115 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 108 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9