Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 995:1ba8a398af9c refactor/lazy_tensors
Rename types
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 18 Mar 2022 21:14:47 +0100 |
parents | 2ae62dbaf839 |
children | 7fc8df5157a7 |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors import Sbplib.SbpOperators.VolumeOperator @testset "SecondDerivative" begin operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Lx = 3.5 Ly = 3. g_1D = EquidistantGrid(121, 0.0, Lx) g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) @testset "Constructors" begin @testset "1D" begin Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils,1) @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils) @test Dₓₓ == second_derivative(g_1D,stencil_set,1) @test Dₓₓ isa VolumeOperator end @testset "2D" begin Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) D2 = second_derivative(g_1D,inner_stencil,closure_stencils) I = IdentityTensor{Float64}(size(g_2D)[2]) @test Dₓₓ == D2⊗I @test Dₓₓ == second_derivative(g_2D,stencil_set,1) @test Dₓₓ isa LazyTensor{T,2,2} where T end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin @testset "1D" begin l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); monomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x) = 1/factorial(i)*x^i monomials = (monomials...,evalOn(g_1D,f_i)) end v = evalOn(g_1D,x -> sin(x)) vₓₓ = evalOn(g_1D,x -> -sin(x)) # 2nd order interior stencil, 1nd order boundary stencil, # implies that L*v should be exact for monomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for monomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 end end @testset "2D" begin l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); binomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y) = 1/factorial(i)*y^i + x^i binomials = (binomials...,evalOn(g_2D,f_i)) end v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) v_yy = evalOn(g_2D,(x,y) -> -cos(y)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 end end end end