Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/InverseQuadrature.jl @ 302:6fa2ba769ae3
Create 1D tensor mapping for inverse diagonal norm, and make the multi-dimensional inverse quadrature use those. Move InverseQudrature from laplace.jl into InverseQuadrature.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 23 Jun 2020 18:56:59 +0200 |
parents | |
children | bd09d67ebb22 |
comparison
equal
deleted
inserted
replaced
301:417b767c847f | 302:6fa2ba769ae3 |
---|---|
1 """ | |
2 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | |
3 | |
4 Implements the inverse quadrature operator `Qi` of Dim dimension as a TensorOperator | |
5 The multi-dimensional tensor operator consists of a tuple of 1D InverseDiagonalNorm | |
6 tensor operators. | |
7 """ | |
8 struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} | |
9 Hi::NTuple{Dim,InverseDiagonalNorm{T,N,M}} | |
10 end | |
11 export Quadrature | |
12 | |
13 LazyTensors.domain_size(Qi::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size | |
14 | |
15 function LazyTensors.apply(Qi::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} | |
16 error("not implemented") | |
17 end | |
18 | |
19 LazyTensors.apply_transpose(Qi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) | |
20 | |
21 @inline function LazyTensors.apply(Qi::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | |
22 @inbounds q = apply(Qi.Hi[1], v , I[1]) | |
23 return q | |
24 end | |
25 | |
26 @inline function LazyTensors.apply(Qi::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T | |
27 # Quadrature in x direction | |
28 @inbounds vx = view(v, :, Int(I[2])) | |
29 @inbounds qx_inv = apply(Qi.Hi[1], vx , I[1]) | |
30 # Quadrature in y-direction | |
31 @inbounds vy = view(v, Int(I[1]), :) | |
32 @inbounds qy_inv = apply(Qi.Hi[2], vy, I[2]) | |
33 return qx_inv*qy_inv | |
34 end | |
35 | |
36 """ | |
37 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | |
38 | |
39 Implements the quadrature operator `Hi` of Dim dimension as a TensorMapping | |
40 """ | |
41 struct InverseDiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} | |
42 h_inv::T # The reciprocl grid spacing could be included in the stencil already. Preferable? | |
43 closure::NTuple{M,T} | |
44 #TODO: Write a nice constructor | |
45 end | |
46 | |
47 @inline function LazyTensors.apply(Hi::InverseDiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | |
48 return @inbounds apply(Hi, v, I[1]) | |
49 end | |
50 | |
51 LazyTensors.apply_transpose(Hi::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(Hi,v,I) | |
52 | |
53 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T | |
54 return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] | |
55 end | |
56 @inline LazyTensors.apply(Hi::InverseDiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T | |
57 N = length(v); | |
58 return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]v[Int(i)] | |
59 end | |
60 | |
61 @inline LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T | |
62 return @inbounds Hi.h_inv*v[Int(i)] | |
63 end | |
64 | |
65 function LazyTensors.apply(Hi::InverseDiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T | |
66 N = length(v); | |
67 r = getregion(Int(index), closuresize(Hi), N) | |
68 i = Index(Int(index), r) | |
69 return LazyTensors.apply(Hi, v, i) | |
70 end | |
71 export LazyTensors.apply | |
72 | |
73 function closuresize(Hi::InverseDiagonalNorm{T<:Real,N,M}) where {T,N,M} | |
74 return M | |
75 end |