Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 745:6dd9f97fc2be
Merge in feature/selectable_tests.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 17 Mar 2021 22:21:01 +0100 |
parents | 6114274447f5 |
children | f88b2117dc69 24df68453890 |
comparison
equal
deleted
inserted
replaced
718:05d8ea88c690 | 745:6dd9f97fc2be |
---|---|
1 using Test | |
2 | |
3 using Sbplib.SbpOperators | |
4 using Sbplib.Grids | |
5 using Sbplib.LazyTensors | |
6 | |
7 @testset "Laplace" begin | |
8 g_1D = EquidistantGrid(101, 0.0, 1.) | |
9 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) | |
10 @testset "Constructors" begin | |
11 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
12 @testset "1D" begin | |
13 L = laplace(g_1D, op.innerStencil, op.closureStencils) | |
14 @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils) | |
15 @test L isa TensorMapping{T,1,1} where T | |
16 end | |
17 @testset "3D" begin | |
18 L = laplace(g_3D, op.innerStencil, op.closureStencils) | |
19 @test L isa TensorMapping{T,3,3} where T | |
20 Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1) | |
21 Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2) | |
22 Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3) | |
23 @test L == Dxx + Dyy + Dzz | |
24 end | |
25 end | |
26 | |
27 # Exact differentiation is measured point-wise. In other cases | |
28 # the error is measured in the l2-norm. | |
29 @testset "Accuracy" begin | |
30 l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); | |
31 polynomials = () | |
32 maxOrder = 4; | |
33 for i = 0:maxOrder-1 | |
34 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) | |
35 polynomials = (polynomials...,evalOn(g_3D,f_i)) | |
36 end | |
37 v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) | |
38 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) | |
39 | |
40 # 2nd order interior stencil, 1st order boundary stencil, | |
41 # implies that L*v should be exact for binomials up to order 2. | |
42 @testset "2nd order" begin | |
43 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | |
44 L = laplace(g_3D,op.innerStencil,op.closureStencils) | |
45 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
46 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
47 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | |
48 @test L*v ≈ Δv rtol = 5e-2 norm = l2 | |
49 end | |
50 | |
51 # 4th order interior stencil, 2nd order boundary stencil, | |
52 # implies that L*v should be exact for binomials up to order 3. | |
53 @testset "4th order" begin | |
54 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
55 L = laplace(g_3D,op.innerStencil,op.closureStencils) | |
56 # NOTE: high tolerances for checking the "exact" differentiation | |
57 # due to accumulation of round-off errors/cancellation errors? | |
58 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
59 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 | |
60 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 | |
61 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 | |
62 @test L*v ≈ Δv rtol = 5e-4 norm = l2 | |
63 end | |
64 end | |
65 end |