comparison test/SbpOperators/volumeops/laplace/laplace_test.jl @ 745:6dd9f97fc2be

Merge in feature/selectable_tests.
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 17 Mar 2021 22:21:01 +0100
parents 6114274447f5
children f88b2117dc69 24df68453890
comparison
equal deleted inserted replaced
718:05d8ea88c690 745:6dd9f97fc2be
1 using Test
2
3 using Sbplib.SbpOperators
4 using Sbplib.Grids
5 using Sbplib.LazyTensors
6
7 @testset "Laplace" begin
8 g_1D = EquidistantGrid(101, 0.0, 1.)
9 g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.))
10 @testset "Constructors" begin
11 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
12 @testset "1D" begin
13 L = laplace(g_1D, op.innerStencil, op.closureStencils)
14 @test L == second_derivative(g_1D, op.innerStencil, op.closureStencils)
15 @test L isa TensorMapping{T,1,1} where T
16 end
17 @testset "3D" begin
18 L = laplace(g_3D, op.innerStencil, op.closureStencils)
19 @test L isa TensorMapping{T,3,3} where T
20 Dxx = second_derivative(g_3D, op.innerStencil, op.closureStencils,1)
21 Dyy = second_derivative(g_3D, op.innerStencil, op.closureStencils,2)
22 Dzz = second_derivative(g_3D, op.innerStencil, op.closureStencils,3)
23 @test L == Dxx + Dyy + Dzz
24 end
25 end
26
27 # Exact differentiation is measured point-wise. In other cases
28 # the error is measured in the l2-norm.
29 @testset "Accuracy" begin
30 l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2));
31 polynomials = ()
32 maxOrder = 4;
33 for i = 0:maxOrder-1
34 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i)
35 polynomials = (polynomials...,evalOn(g_3D,f_i))
36 end
37 v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z))
38 Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z))
39
40 # 2nd order interior stencil, 1st order boundary stencil,
41 # implies that L*v should be exact for binomials up to order 2.
42 @testset "2nd order" begin
43 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
44 L = laplace(g_3D,op.innerStencil,op.closureStencils)
45 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
46 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
47 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
48 @test L*v ≈ Δv rtol = 5e-2 norm = l2
49 end
50
51 # 4th order interior stencil, 2nd order boundary stencil,
52 # implies that L*v should be exact for binomials up to order 3.
53 @testset "4th order" begin
54 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
55 L = laplace(g_3D,op.innerStencil,op.closureStencils)
56 # NOTE: high tolerances for checking the "exact" differentiation
57 # due to accumulation of round-off errors/cancellation errors?
58 @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
59 @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9
60 @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9
61 @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9
62 @test L*v ≈ Δv rtol = 5e-4 norm = l2
63 end
64 end
65 end