Mercurial > repos > public > sbplib_julia
comparison test/DiffOps/DiffOps_test.jl @ 745:6dd9f97fc2be
Merge in feature/selectable_tests.
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Wed, 17 Mar 2021 22:21:01 +0100 |
| parents | 11a444d6fc93 |
| children | 1ba8a398af9c |
comparison
equal
deleted
inserted
replaced
| 718:05d8ea88c690 | 745:6dd9f97fc2be |
|---|---|
| 1 using Test | |
| 2 using Sbplib.DiffOps | |
| 3 using Sbplib.Grids | |
| 4 using Sbplib.SbpOperators | |
| 5 using Sbplib.RegionIndices | |
| 6 using Sbplib.LazyTensors | |
| 7 | |
| 8 # | |
| 9 # @testset "BoundaryValue" begin | |
| 10 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
| 11 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | |
| 12 # | |
| 13 # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | |
| 14 # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | |
| 15 # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | |
| 16 # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | |
| 17 # | |
| 18 # v = zeros(Float64, 4, 5) | |
| 19 # v[:,5] = [1, 2, 3,4] | |
| 20 # v[:,4] = [1, 2, 3,4] | |
| 21 # v[:,3] = [4, 5, 6, 7] | |
| 22 # v[:,2] = [7, 8, 9, 10] | |
| 23 # v[:,1] = [10, 11, 12, 13] | |
| 24 # | |
| 25 # @test e_w isa TensorMapping{T,2,1} where T | |
| 26 # @test e_w' isa TensorMapping{T,1,2} where T | |
| 27 # | |
| 28 # @test domain_size(e_w, (3,2)) == (2,) | |
| 29 # @test domain_size(e_e, (3,2)) == (2,) | |
| 30 # @test domain_size(e_s, (3,2)) == (3,) | |
| 31 # @test domain_size(e_n, (3,2)) == (3,) | |
| 32 # | |
| 33 # @test size(e_w'*v) == (5,) | |
| 34 # @test size(e_e'*v) == (5,) | |
| 35 # @test size(e_s'*v) == (4,) | |
| 36 # @test size(e_n'*v) == (4,) | |
| 37 # | |
| 38 # @test collect(e_w'*v) == [10,7,4,1.0,1] | |
| 39 # @test collect(e_e'*v) == [13,10,7,4,4.0] | |
| 40 # @test collect(e_s'*v) == [10,11,12,13.0] | |
| 41 # @test collect(e_n'*v) == [1,2,3,4.0] | |
| 42 # | |
| 43 # g_x = [1,2,3,4.0] | |
| 44 # g_y = [5,4,3,2,1.0] | |
| 45 # | |
| 46 # G_w = zeros(Float64, (4,5)) | |
| 47 # G_w[1,:] = g_y | |
| 48 # | |
| 49 # G_e = zeros(Float64, (4,5)) | |
| 50 # G_e[4,:] = g_y | |
| 51 # | |
| 52 # G_s = zeros(Float64, (4,5)) | |
| 53 # G_s[:,1] = g_x | |
| 54 # | |
| 55 # G_n = zeros(Float64, (4,5)) | |
| 56 # G_n[:,5] = g_x | |
| 57 # | |
| 58 # @test size(e_w*g_y) == (UnknownDim,5) | |
| 59 # @test size(e_e*g_y) == (UnknownDim,5) | |
| 60 # @test size(e_s*g_x) == (4,UnknownDim) | |
| 61 # @test size(e_n*g_x) == (4,UnknownDim) | |
| 62 # | |
| 63 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
| 64 # @test_broken collect(e_w*g_y) == G_w | |
| 65 # @test_broken collect(e_e*g_y) == G_e | |
| 66 # @test_broken collect(e_s*g_x) == G_s | |
| 67 # @test_broken collect(e_n*g_x) == G_n | |
| 68 # end | |
| 69 # | |
| 70 # @testset "NormalDerivative" begin | |
| 71 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
| 72 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | |
| 73 # | |
| 74 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | |
| 75 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | |
| 76 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | |
| 77 # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) | |
| 78 # | |
| 79 # | |
| 80 # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
| 81 # v∂x = evalOn(g, (x,y)-> 2*x + y) | |
| 82 # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) | |
| 83 # | |
| 84 # @test d_w isa TensorMapping{T,2,1} where T | |
| 85 # @test d_w' isa TensorMapping{T,1,2} where T | |
| 86 # | |
| 87 # @test domain_size(d_w, (3,2)) == (2,) | |
| 88 # @test domain_size(d_e, (3,2)) == (2,) | |
| 89 # @test domain_size(d_s, (3,2)) == (3,) | |
| 90 # @test domain_size(d_n, (3,2)) == (3,) | |
| 91 # | |
| 92 # @test size(d_w'*v) == (6,) | |
| 93 # @test size(d_e'*v) == (6,) | |
| 94 # @test size(d_s'*v) == (5,) | |
| 95 # @test size(d_n'*v) == (5,) | |
| 96 # | |
| 97 # @test collect(d_w'*v) ≈ v∂x[1,:] | |
| 98 # @test collect(d_e'*v) ≈ v∂x[5,:] | |
| 99 # @test collect(d_s'*v) ≈ v∂y[:,1] | |
| 100 # @test collect(d_n'*v) ≈ v∂y[:,6] | |
| 101 # | |
| 102 # | |
| 103 # d_x_l = zeros(Float64, 5) | |
| 104 # d_x_u = zeros(Float64, 5) | |
| 105 # for i ∈ eachindex(d_x_l) | |
| 106 # d_x_l[i] = op.dClosure[i-1] | |
| 107 # d_x_u[i] = -op.dClosure[length(d_x_u)-i] | |
| 108 # end | |
| 109 # | |
| 110 # d_y_l = zeros(Float64, 6) | |
| 111 # d_y_u = zeros(Float64, 6) | |
| 112 # for i ∈ eachindex(d_y_l) | |
| 113 # d_y_l[i] = op.dClosure[i-1] | |
| 114 # d_y_u[i] = -op.dClosure[length(d_y_u)-i] | |
| 115 # end | |
| 116 # | |
| 117 # function prod_matrix(x,y) | |
| 118 # G = zeros(Float64, length(x), length(y)) | |
| 119 # for I ∈ CartesianIndices(G) | |
| 120 # G[I] = x[I[1]]*y[I[2]] | |
| 121 # end | |
| 122 # | |
| 123 # return G | |
| 124 # end | |
| 125 # | |
| 126 # g_x = [1,2,3,4.0,5] | |
| 127 # g_y = [5,4,3,2,1.0,11] | |
| 128 # | |
| 129 # G_w = prod_matrix(d_x_l, g_y) | |
| 130 # G_e = prod_matrix(d_x_u, g_y) | |
| 131 # G_s = prod_matrix(g_x, d_y_l) | |
| 132 # G_n = prod_matrix(g_x, d_y_u) | |
| 133 # | |
| 134 # | |
| 135 # @test size(d_w*g_y) == (UnknownDim,6) | |
| 136 # @test size(d_e*g_y) == (UnknownDim,6) | |
| 137 # @test size(d_s*g_x) == (5,UnknownDim) | |
| 138 # @test size(d_n*g_x) == (5,UnknownDim) | |
| 139 # | |
| 140 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
| 141 # @test_broken collect(d_w*g_y) ≈ G_w | |
| 142 # @test_broken collect(d_e*g_y) ≈ G_e | |
| 143 # @test_broken collect(d_s*g_x) ≈ G_s | |
| 144 # @test_broken collect(d_n*g_x) ≈ G_n | |
| 145 # end | |
| 146 # | |
| 147 # @testset "BoundaryQuadrature" begin | |
| 148 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | |
| 149 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | |
| 150 # | |
| 151 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) | |
| 152 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) | |
| 153 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) | |
| 154 # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) | |
| 155 # | |
| 156 # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
| 157 # | |
| 158 # function get_quadrature(N) | |
| 159 # qc = op.quadratureClosure | |
| 160 # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) | |
| 161 # @assert length(q) == N | |
| 162 # return q | |
| 163 # end | |
| 164 # | |
| 165 # v_w = v[1,:] | |
| 166 # v_e = v[10,:] | |
| 167 # v_s = v[:,1] | |
| 168 # v_n = v[:,11] | |
| 169 # | |
| 170 # q_x = spacing(g)[1].*get_quadrature(10) | |
| 171 # q_y = spacing(g)[2].*get_quadrature(11) | |
| 172 # | |
| 173 # @test H_w isa TensorOperator{T,1} where T | |
| 174 # | |
| 175 # @test domain_size(H_w, (3,)) == (3,) | |
| 176 # @test domain_size(H_n, (3,)) == (3,) | |
| 177 # | |
| 178 # @test range_size(H_w, (3,)) == (3,) | |
| 179 # @test range_size(H_n, (3,)) == (3,) | |
| 180 # | |
| 181 # @test size(H_w*v_w) == (11,) | |
| 182 # @test size(H_e*v_e) == (11,) | |
| 183 # @test size(H_s*v_s) == (10,) | |
| 184 # @test size(H_n*v_n) == (10,) | |
| 185 # | |
| 186 # @test collect(H_w*v_w) ≈ q_y.*v_w | |
| 187 # @test collect(H_e*v_e) ≈ q_y.*v_e | |
| 188 # @test collect(H_s*v_s) ≈ q_x.*v_s | |
| 189 # @test collect(H_n*v_n) ≈ q_x.*v_n | |
| 190 # | |
| 191 # @test collect(H_w'*v_w) == collect(H_w'*v_w) | |
| 192 # @test collect(H_e'*v_e) == collect(H_e'*v_e) | |
| 193 # @test collect(H_s'*v_s) == collect(H_s'*v_s) | |
| 194 # @test collect(H_n'*v_n) == collect(H_n'*v_n) | |
| 195 # end |
