Mercurial > repos > public > sbplib_julia
view test/DiffOps/DiffOps_test.jl @ 714:11a444d6fc93 feature/selectable_tests
Remove module wrapping testsets. They are now automatically added through the folders
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 20 Feb 2021 21:15:52 +0100 |
parents | df88aee35bb9 |
children | 1ba8a398af9c |
line wrap: on
line source
using Test using Sbplib.DiffOps using Sbplib.Grids using Sbplib.SbpOperators using Sbplib.RegionIndices using Sbplib.LazyTensors # # @testset "BoundaryValue" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) # # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) # # v = zeros(Float64, 4, 5) # v[:,5] = [1, 2, 3,4] # v[:,4] = [1, 2, 3,4] # v[:,3] = [4, 5, 6, 7] # v[:,2] = [7, 8, 9, 10] # v[:,1] = [10, 11, 12, 13] # # @test e_w isa TensorMapping{T,2,1} where T # @test e_w' isa TensorMapping{T,1,2} where T # # @test domain_size(e_w, (3,2)) == (2,) # @test domain_size(e_e, (3,2)) == (2,) # @test domain_size(e_s, (3,2)) == (3,) # @test domain_size(e_n, (3,2)) == (3,) # # @test size(e_w'*v) == (5,) # @test size(e_e'*v) == (5,) # @test size(e_s'*v) == (4,) # @test size(e_n'*v) == (4,) # # @test collect(e_w'*v) == [10,7,4,1.0,1] # @test collect(e_e'*v) == [13,10,7,4,4.0] # @test collect(e_s'*v) == [10,11,12,13.0] # @test collect(e_n'*v) == [1,2,3,4.0] # # g_x = [1,2,3,4.0] # g_y = [5,4,3,2,1.0] # # G_w = zeros(Float64, (4,5)) # G_w[1,:] = g_y # # G_e = zeros(Float64, (4,5)) # G_e[4,:] = g_y # # G_s = zeros(Float64, (4,5)) # G_s[:,1] = g_x # # G_n = zeros(Float64, (4,5)) # G_n[:,5] = g_x # # @test size(e_w*g_y) == (UnknownDim,5) # @test size(e_e*g_y) == (UnknownDim,5) # @test size(e_s*g_x) == (4,UnknownDim) # @test size(e_n*g_x) == (4,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken collect(e_w*g_y) == G_w # @test_broken collect(e_e*g_y) == G_e # @test_broken collect(e_s*g_x) == G_s # @test_broken collect(e_n*g_x) == G_n # end # # @testset "NormalDerivative" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) # # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) # # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # v∂x = evalOn(g, (x,y)-> 2*x + y) # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) # # @test d_w isa TensorMapping{T,2,1} where T # @test d_w' isa TensorMapping{T,1,2} where T # # @test domain_size(d_w, (3,2)) == (2,) # @test domain_size(d_e, (3,2)) == (2,) # @test domain_size(d_s, (3,2)) == (3,) # @test domain_size(d_n, (3,2)) == (3,) # # @test size(d_w'*v) == (6,) # @test size(d_e'*v) == (6,) # @test size(d_s'*v) == (5,) # @test size(d_n'*v) == (5,) # # @test collect(d_w'*v) ≈ v∂x[1,:] # @test collect(d_e'*v) ≈ v∂x[5,:] # @test collect(d_s'*v) ≈ v∂y[:,1] # @test collect(d_n'*v) ≈ v∂y[:,6] # # # d_x_l = zeros(Float64, 5) # d_x_u = zeros(Float64, 5) # for i ∈ eachindex(d_x_l) # d_x_l[i] = op.dClosure[i-1] # d_x_u[i] = -op.dClosure[length(d_x_u)-i] # end # # d_y_l = zeros(Float64, 6) # d_y_u = zeros(Float64, 6) # for i ∈ eachindex(d_y_l) # d_y_l[i] = op.dClosure[i-1] # d_y_u[i] = -op.dClosure[length(d_y_u)-i] # end # # function prod_matrix(x,y) # G = zeros(Float64, length(x), length(y)) # for I ∈ CartesianIndices(G) # G[I] = x[I[1]]*y[I[2]] # end # # return G # end # # g_x = [1,2,3,4.0,5] # g_y = [5,4,3,2,1.0,11] # # G_w = prod_matrix(d_x_l, g_y) # G_e = prod_matrix(d_x_u, g_y) # G_s = prod_matrix(g_x, d_y_l) # G_n = prod_matrix(g_x, d_y_u) # # # @test size(d_w*g_y) == (UnknownDim,6) # @test size(d_e*g_y) == (UnknownDim,6) # @test size(d_s*g_x) == (5,UnknownDim) # @test size(d_n*g_x) == (5,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken collect(d_w*g_y) ≈ G_w # @test_broken collect(d_e*g_y) ≈ G_e # @test_broken collect(d_s*g_x) ≈ G_s # @test_broken collect(d_n*g_x) ≈ G_n # end # # @testset "BoundaryQuadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # # function get_quadrature(N) # qc = op.quadratureClosure # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # return q # end # # v_w = v[1,:] # v_e = v[10,:] # v_s = v[:,1] # v_n = v[:,11] # # q_x = spacing(g)[1].*get_quadrature(10) # q_y = spacing(g)[2].*get_quadrature(11) # # @test H_w isa TensorOperator{T,1} where T # # @test domain_size(H_w, (3,)) == (3,) # @test domain_size(H_n, (3,)) == (3,) # # @test range_size(H_w, (3,)) == (3,) # @test range_size(H_n, (3,)) == (3,) # # @test size(H_w*v_w) == (11,) # @test size(H_e*v_e) == (11,) # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # # @test collect(H_w*v_w) ≈ q_y.*v_w # @test collect(H_e*v_e) ≈ q_y.*v_e # @test collect(H_s*v_s) ≈ q_x.*v_s # @test collect(H_n*v_n) ≈ q_x.*v_n # # @test collect(H_w'*v_w) == collect(H_w'*v_w) # @test collect(H_e'*v_e) == collect(H_e'*v_e) # @test collect(H_s'*v_s) == collect(H_s'*v_s) # @test collect(H_n'*v_n) == collect(H_n'*v_n) # end