Mercurial > repos > public > sbplib_julia
comparison src/Grids/equidistant_grid.jl @ 1359:646027afe74b bugfix/lazytensors
Merge default
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Sat, 20 May 2023 14:33:25 +0200 |
| parents | 08f06bfacd5c |
| children | 4684c7f1c4cb |
comparison
equal
deleted
inserted
replaced
| 1299:4c0bc52e170f | 1359:646027afe74b |
|---|---|
| 1 """ | |
| 2 EquidistantGrid{T,R<:AbstractRange{T}} <: Grid{T,1} | |
| 1 | 3 |
| 4 A one-dimensional equidistant grid. Most users are expected to use | |
| 5 [`equidistant_grid`](@ref) for constructing equidistant grids. | |
| 6 | |
| 7 See also: [`equidistant_grid`](@ref) | |
| 8 | |
| 9 | |
| 10 ## Note | |
| 11 The type of range used for the points can likely impact performance. | |
| 2 """ | 12 """ |
| 3 EquidistantGrid{Dim,T<:Real} <: Grid | 13 struct EquidistantGrid{T,R<:AbstractRange{T}} <: Grid{T,1} |
| 4 | 14 points::R |
| 5 `Dim`-dimensional equidistant grid with coordinates of type `T`. | |
| 6 """ | |
| 7 struct EquidistantGrid{Dim,T<:Real} <: Grid | |
| 8 size::NTuple{Dim, Int} | |
| 9 limit_lower::NTuple{Dim, T} | |
| 10 limit_upper::NTuple{Dim, T} | |
| 11 | |
| 12 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} | |
| 13 if any(size .<= 0) | |
| 14 throw(DomainError("all components of size must be postive")) | |
| 15 end | |
| 16 if any(limit_upper.-limit_lower .<= 0) | |
| 17 throw(DomainError("all side lengths must be postive")) | |
| 18 end | |
| 19 return new{Dim,T}(size, limit_lower, limit_upper) | |
| 20 end | |
| 21 end | 15 end |
| 22 | 16 |
| 17 # Indexing interface | |
| 18 Base.getindex(g::EquidistantGrid, i) = g.points[i] | |
| 19 Base.eachindex(g::EquidistantGrid) = eachindex(g.points) | |
| 20 Base.firstindex(g::EquidistantGrid) = firstindex(g.points) | |
| 21 Base.lastindex(g::EquidistantGrid) = lastindex(g.points) | |
| 23 | 22 |
| 24 """ | 23 # Iteration interface |
| 25 EquidistantGrid(size, limit_lower, limit_upper) | 24 Base.iterate(g::EquidistantGrid) = iterate(g.points) |
| 25 Base.iterate(g::EquidistantGrid, state) = iterate(g.points, state) | |
| 26 | 26 |
| 27 Construct an equidistant grid with corners at the coordinates `limit_lower` and | 27 Base.IteratorSize(::Type{<:EquidistantGrid}) = Base.HasShape{1}() |
| 28 `limit_upper`. | 28 Base.length(g::EquidistantGrid) = length(g.points) |
| 29 | 29 Base.size(g::EquidistantGrid) = size(g.points) |
| 30 The length of the domain sides are given by the components of | |
| 31 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined | |
| 32 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. | |
| 33 | |
| 34 The number of equidistantly spaced points in each coordinate direction are given | |
| 35 by the tuple `size`. | |
| 36 """ | |
| 37 function EquidistantGrid(size, limit_lower, limit_upper) | |
| 38 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) | |
| 39 end | |
| 40 | |
| 41 | |
| 42 """ | |
| 43 EquidistantGrid{T}() | |
| 44 | |
| 45 Constructs a 0-dimensional grid. | |
| 46 """ | |
| 47 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid | |
| 48 | |
| 49 | |
| 50 """ | |
| 51 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) | |
| 52 | |
| 53 Convenience constructor for 1D grids. | |
| 54 """ | |
| 55 function EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) where T | |
| 56 return EquidistantGrid((size,),(limit_lower,),(limit_upper,)) | |
| 57 end | |
| 58 | |
| 59 Base.eltype(grid::EquidistantGrid{Dim,T}) where {Dim,T} = T | |
| 60 | |
| 61 Base.eachindex(grid::EquidistantGrid) = CartesianIndices(grid.size) | |
| 62 | |
| 63 Base.size(g::EquidistantGrid) = g.size | |
| 64 | |
| 65 Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim | |
| 66 | |
| 67 | |
| 68 | |
| 69 | 30 |
| 70 | 31 |
| 71 """ | 32 """ |
| 72 spacing(grid::EquidistantGrid) | 33 spacing(grid::EquidistantGrid) |
| 73 | 34 |
| 74 The spacing between grid points. | 35 The spacing between grid points. |
| 75 """ | 36 """ |
| 76 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) | 37 spacing(g::EquidistantGrid) = step(g.points) |
| 77 | 38 |
| 78 | 39 |
| 79 """ | 40 """ |
| 80 inverse_spacing(grid::EquidistantGrid) | 41 inverse_spacing(grid::EquidistantGrid) |
| 81 | 42 |
| 82 The reciprocal of the spacing between grid points. | 43 The reciprocal of the spacing between grid points. |
| 83 """ | 44 """ |
| 84 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) | 45 inverse_spacing(g::EquidistantGrid) = 1/step(g.points) |
| 46 | |
| 47 | |
| 48 boundary_identifiers(::EquidistantGrid) = (Lower(), Upper()) | |
| 49 boundary_grid(g::EquidistantGrid, id::Lower) = ZeroDimGrid(g[begin]) | |
| 50 boundary_grid(g::EquidistantGrid, id::Upper) = ZeroDimGrid(g[end]) | |
| 85 | 51 |
| 86 | 52 |
| 87 """ | 53 """ |
| 88 points(grid::EquidistantGrid) | 54 refine(g::EquidistantGrid, r::Int) |
| 89 | 55 |
| 90 The point of the grid as an array of tuples with the same dimension as the grid. | 56 The grid where `g` is refined by the factor `r`. The factor is applied to the number of |
| 91 The points are stored as [(x1,y1), (x1,y2), … (x1,yn); | 57 intervals, i.e., 1 less than the size of `g`. |
| 92 (x2,y1), (x2,y2), … (x2,yn); | 58 |
| 93 ⋮ ⋮ ⋮ | 59 See also: [`coarsen`](@ref) |
| 94 (xm,y1), (xm,y2), … (xm,yn)] | |
| 95 """ | 60 """ |
| 96 function points(grid::EquidistantGrid) | 61 function refine(g::EquidistantGrid, r::Int) |
| 97 indices = Tuple.(CartesianIndices(grid.size)) | 62 new_sz = (length(g) - 1)*r + 1 |
| 98 h = spacing(grid) | 63 return EquidistantGrid(change_length(g.points, new_sz)) |
| 99 return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) | 64 end |
| 65 | |
| 66 """ | |
| 67 coarsen(g::EquidistantGrid, r::Int) | |
| 68 | |
| 69 The grid where `g` is coarsened by the factor `r`. The factor is applied to the number of | |
| 70 intervals, i.e., 1 less than the size of `g`. If the number of | |
| 71 intervals are not divisible by `r` an error is raised. | |
| 72 | |
| 73 See also: [`refine`](@ref) | |
| 74 """ | |
| 75 function coarsen(g::EquidistantGrid, r::Int) | |
| 76 if (length(g)-1)%r != 0 | |
| 77 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
| 78 end | |
| 79 | |
| 80 new_sz = (length(g) - 1)÷r + 1 | |
| 81 | |
| 82 return EquidistantGrid(change_length(g.points, new_sz)) | |
| 100 end | 83 end |
| 101 | 84 |
| 102 | 85 |
| 103 """ | 86 """ |
| 104 restrict(::EquidistantGrid, dim) | 87 equidistant_grid(size::Dims, limit_lower, limit_upper) |
| 105 | 88 |
| 106 Pick out given dimensions from the grid and return a grid for them. | 89 Construct an equidistant grid with corners at the coordinates `limit_lower` and |
| 90 `limit_upper`. | |
| 91 | |
| 92 The length of the domain sides are given by the components of | |
| 93 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and | |
| 94 `limit_upper=(1,2)` the domain is defined as `(-1,1)x(0,2)`. The side lengths | |
| 95 of the grid are not allowed to be negative. | |
| 96 | |
| 97 The number of equispaced points in each coordinate direction are given | |
| 98 by the tuple `size`. | |
| 99 | |
| 100 Note: If `limit_lower` and `limit_upper` are integers and `size` would allow a | |
| 101 completely integer grid, `equidistant_grid` will still return a floating point | |
| 102 grid. This simlifies the implementation and avoids certain surprise | |
| 103 behaviours. | |
| 107 """ | 104 """ |
| 108 function restrict(grid::EquidistantGrid, dim) | 105 function equidistant_grid(size::Dims, limit_lower, limit_upper) |
| 109 size = grid.size[dim] | 106 gs = map(equidistant_grid, size, limit_lower, limit_upper) |
| 110 limit_lower = grid.limit_lower[dim] | 107 return TensorGrid(gs...) |
| 111 limit_upper = grid.limit_upper[dim] | 108 end |
| 112 | 109 |
| 113 return EquidistantGrid(size, limit_lower, limit_upper) | 110 """ |
| 111 equidistant_grid(size::Int, limit_lower::T, limit_upper::T) | |
| 112 | |
| 113 Constructs a 1D equidistant grid. | |
| 114 """ | |
| 115 function equidistant_grid(size::Int, limit_lower::T, limit_upper::T) where T | |
| 116 if any(size .<= 0) | |
| 117 throw(DomainError("size must be postive")) | |
| 118 end | |
| 119 | |
| 120 if any(limit_upper.-limit_lower .<= 0) | |
| 121 throw(DomainError("side length must be postive")) | |
| 122 end | |
| 123 return EquidistantGrid(range(limit_lower, limit_upper, length=size)) # TBD: Should it use LinRange instead? | |
| 114 end | 124 end |
| 125 | |
| 126 CartesianBoundary{D,BID} = TensorGridBoundary{D,BID} # TBD: What should we do about the naming of this boundary? | |
| 115 | 127 |
| 116 | 128 |
| 117 """ | 129 """ |
| 118 orthogonal_dims(grid::EquidistantGrid,dim) | 130 change_length(r::AbstractRange, n) |
| 119 | 131 |
| 120 Returns the dimensions of grid orthogonal to that of dim. | 132 Change the length of `r` to `n`, keeping the same start and stop. |
| 121 """ | 133 """ |
| 122 function orthogonal_dims(grid::EquidistantGrid, dim) | 134 function change_length end |
| 123 orth_dims = filter(i -> i != dim, dims(grid)) | |
| 124 if orth_dims == dims(grid) | |
| 125 throw(DomainError(string("dimension ",string(dim)," not matching grid"))) | |
| 126 end | |
| 127 return orth_dims | |
| 128 end | |
| 129 | 135 |
| 130 | 136 change_length(r::UnitRange, n) = StepRange{Int,Int}(range(r[begin], r[end], n)) |
| 131 """ | 137 change_length(r::StepRange, n) = StepRange{Int,Int}(range(r[begin], r[end], n)) |
| 132 boundary_identifiers(::EquidistantGrid) | 138 change_length(r::StepRangeLen, n) = range(r[begin], r[end], n) |
| 133 | 139 change_length(r::LinRange, n) = LinRange(r[begin], r[end], n) |
| 134 Returns a tuple containing the boundary identifiers for the grid, stored as | |
| 135 (CartesianBoundary(1,Lower), | |
| 136 CartesianBoundary(1,Upper), | |
| 137 CartesianBoundary(2,Lower), | |
| 138 ...) | |
| 139 """ | |
| 140 boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),ndims(g)))...)...,) | |
| 141 | |
| 142 | |
| 143 """ | |
| 144 boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | |
| 145 | |
| 146 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions | |
| 147 orthogonal to the boundary specified by `id`. The boundary grid of a 1-dimensional | |
| 148 grid is a zero-dimensional grid. | |
| 149 """ | |
| 150 function boundary_grid(grid::EquidistantGrid, id::CartesianBoundary) | |
| 151 orth_dims = orthogonal_dims(grid, dim(id)) | |
| 152 return restrict(grid, orth_dims) | |
| 153 end | |
| 154 boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}() | |
| 155 | |
| 156 | |
| 157 """ | |
| 158 refine(grid::EquidistantGrid, r::Int) | |
| 159 | |
| 160 Refines `grid` by a factor `r`. The factor is applied to the number of | |
| 161 intervals which is 1 less than the size of the grid. | |
| 162 | |
| 163 See also: [`coarsen`](@ref) | |
| 164 """ | |
| 165 function refine(grid::EquidistantGrid, r::Int) | |
| 166 sz = size(grid) | |
| 167 new_sz = (sz .- 1).*r .+ 1 | |
| 168 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
| 169 end | |
| 170 | |
| 171 | |
| 172 """ | |
| 173 coarsen(grid::EquidistantGrid, r::Int) | |
| 174 | |
| 175 Coarsens `grid` by a factor `r`. The factor is applied to the number of | |
| 176 intervals which is 1 less than the size of the grid. If the number of | |
| 177 intervals are not divisible by `r` an error is raised. | |
| 178 | |
| 179 See also: [`refine`](@ref) | |
| 180 """ | |
| 181 function coarsen(grid::EquidistantGrid, r::Int) | |
| 182 sz = size(grid) | |
| 183 | |
| 184 if !all(n -> (n % r == 0), sz.-1) | |
| 185 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
| 186 end | |
| 187 | |
| 188 new_sz = (sz .- 1).÷r .+ 1 | |
| 189 | |
| 190 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
| 191 end |
