Mercurial > repos > public > sbplib_julia
view src/Grids/equidistant_grid.jl @ 1365:4684c7f1c4cb feature/variable_derivatives
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 21 May 2023 21:55:14 +0200 |
parents | 102ebdaf7c11 08f06bfacd5c |
children | d2219cc8316b |
line wrap: on
line source
""" EquidistantGrid{T,R<:AbstractRange{T}} <: Grid{T,1} A one-dimensional equidistant grid. Most users are expected to use [`equidistant_grid`](@ref) for constructing equidistant grids. See also: [`equidistant_grid`](@ref) ## Note The type of range used for the points can likely impact performance. """ struct EquidistantGrid{T,R<:AbstractRange{T}} <: Grid{T,1} points::R end # Indexing interface Base.getindex(g::EquidistantGrid, i) = g.points[i] Base.eachindex(g::EquidistantGrid) = eachindex(g.points) Base.firstindex(g::EquidistantGrid) = firstindex(g.points) Base.lastindex(g::EquidistantGrid) = lastindex(g.points) # Iteration interface Base.iterate(g::EquidistantGrid) = iterate(g.points) Base.iterate(g::EquidistantGrid, state) = iterate(g.points, state) Base.IteratorSize(::Type{<:EquidistantGrid}) = Base.HasShape{1}() Base.length(g::EquidistantGrid) = length(g.points) Base.size(g::EquidistantGrid) = size(g.points) """ spacing(grid::EquidistantGrid) The spacing between grid points. """ spacing(g::EquidistantGrid) = step(g.points) """ inverse_spacing(grid::EquidistantGrid) The reciprocal of the spacing between grid points. """ inverse_spacing(g::EquidistantGrid) = 1/step(g.points) boundary_identifiers(::EquidistantGrid) = (Lower(), Upper()) boundary_grid(g::EquidistantGrid, id::Lower) = ZeroDimGrid(g[begin]) boundary_grid(g::EquidistantGrid, id::Upper) = ZeroDimGrid(g[end]) """ refine(g::EquidistantGrid, r::Int) The grid where `g` is refined by the factor `r`. The factor is applied to the number of intervals, i.e., 1 less than the size of `g`. See also: [`coarsen`](@ref) """ function refine(g::EquidistantGrid, r::Int) new_sz = (length(g) - 1)*r + 1 return EquidistantGrid(change_length(g.points, new_sz)) end """ coarsen(g::EquidistantGrid, r::Int) The grid where `g` is coarsened by the factor `r`. The factor is applied to the number of intervals, i.e., 1 less than the size of `g`. If the number of intervals are not divisible by `r` an error is raised. See also: [`refine`](@ref) """ function coarsen(g::EquidistantGrid, r::Int) if (length(g)-1)%r != 0 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) end new_sz = (length(g) - 1)÷r + 1 return EquidistantGrid(change_length(g.points, new_sz)) end """ equidistant_grid(size::Dims, limit_lower, limit_upper) Construct an equidistant grid with corners at the coordinates `limit_lower` and `limit_upper`. The length of the domain sides are given by the components of `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. The number of equispaced points in each coordinate direction are given by the tuple `size`. Note: If `limit_lower` and `limit_upper` are integers and `size` would allow a completely integer grid, `equidistant_grid` will still return a floating point grid. This simlifies the implementation and avoids certain surprise behaviours. """ function equidistant_grid(size::Dims, limit_lower, limit_upper) gs = map(equidistant_grid, size, limit_lower, limit_upper) return TensorGrid(gs...) end """ equidistant_grid(size::Int, limit_lower::T, limit_upper::T) Constructs a 1D equidistant grid. """ function equidistant_grid(size::Int, limit_lower::T, limit_upper::T) where T if any(size .<= 0) throw(DomainError("size must be postive")) end if any(limit_upper.-limit_lower .<= 0) throw(DomainError("side length must be postive")) end return EquidistantGrid(range(limit_lower, limit_upper, length=size)) # TBD: Should it use LinRange instead? end CartesianBoundary{D,BID} = TensorGridBoundary{D,BID} # TBD: What should we do about the naming of this boundary? """ change_length(r::AbstractRange, n) Change the length of `r` to `n`, keeping the same start and stop. """ function change_length end change_length(r::UnitRange, n) = StepRange{Int,Int}(range(r[begin], r[end], n)) change_length(r::StepRange, n) = StepRange{Int,Int}(range(r[begin], r[end], n)) change_length(r::StepRangeLen, n) = range(r[begin], r[end], n) change_length(r::LinRange, n) = LinRange(r[begin], r[end], n)