Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 975:5be8e25c81b3 feature/tensormapping_application_promotion
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 15 Mar 2022 07:37:11 +0100 |
parents | 775d5513da8f |
children | 7bf3121c6864 1ba8a398af9c |
comparison
equal
deleted
inserted
replaced
957:86889fc5b63f | 975:5be8e25c81b3 |
---|---|
1 using Test | 1 using Test |
2 | 2 |
3 using Sbplib.SbpOperators | 3 using Sbplib.SbpOperators |
4 using Sbplib.Grids | 4 using Sbplib.Grids |
5 using Sbplib.LazyTensors | |
5 using Sbplib.RegionIndices | 6 using Sbplib.RegionIndices |
6 using Sbplib.LazyTensors | |
7 | |
8 import Sbplib.SbpOperators.BoundaryOperator | 7 import Sbplib.SbpOperators.BoundaryOperator |
9 | 8 |
10 @testset "normal_derivative" begin | 9 @testset "normal_derivative" begin |
11 g_1D = EquidistantGrid(11, 0.0, 1.0) | 10 g_1D = EquidistantGrid(11, 0.0, 1.0) |
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | 11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) |
13 @testset "normal_derivative" begin | 12 @testset "normal_derivative" begin |
14 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
15 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 14 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
16 @testset "1D" begin | 15 @testset "1D" begin |
17 d_l = normal_derivative(g_1D, d_closure, Lower()) | 16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) |
18 @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) | 17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) |
19 @test d_l isa BoundaryOperator{T,Lower} where T | 18 @test d_l isa BoundaryOperator{T,Lower} where T |
20 @test d_l isa TensorMapping{T,0,1} where T | 19 @test d_l isa TensorMapping{T,0,1} where T |
21 end | 20 end |
22 @testset "2D" begin | 21 @testset "2D" begin |
23 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 22 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) |
24 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | 23 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) |
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) | 24 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) |
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) | 25 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) |
27 d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) | 26 d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) |
28 d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) | 27 d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) |
28 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) | |
29 @test d_w == d_l⊗Iy | 29 @test d_w == d_l⊗Iy |
30 @test d_n == Ix⊗d_r | 30 @test d_n == Ix⊗d_r |
31 @test d_w isa TensorMapping{T,1,2} where T | 31 @test d_w isa TensorMapping{T,1,2} where T |
32 @test d_n isa TensorMapping{T,1,2} where T | 32 @test d_n isa TensorMapping{T,1,2} where T |
33 end | 33 end |
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) |
39 # TODO: Test for higher order polynomials? | 39 # TODO: Test for higher order polynomials? |
40 @testset "2nd order" begin | 40 @testset "2nd order" begin |
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) |
44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) | |
45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) | |
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | |
47 | 44 |
48 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
49 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
50 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
51 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
52 end | 49 end |
53 | 50 |
54 @testset "4th order" begin | 51 @testset "4th order" begin |
55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 52 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 53 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) |
58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) | 55 |
59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) | |
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | |
61 | |
62 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
63 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
64 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 58 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
65 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 59 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
66 end | 60 end |