comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 975:5be8e25c81b3 feature/tensormapping_application_promotion

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 15 Mar 2022 07:37:11 +0100
parents 775d5513da8f
children 7bf3121c6864 1ba8a398af9c
comparison
equal deleted inserted replaced
957:86889fc5b63f 975:5be8e25c81b3
1 using Test 1 using Test
2 2
3 using Sbplib.SbpOperators 3 using Sbplib.SbpOperators
4 using Sbplib.Grids 4 using Sbplib.Grids
5 using Sbplib.LazyTensors
5 using Sbplib.RegionIndices 6 using Sbplib.RegionIndices
6 using Sbplib.LazyTensors
7
8 import Sbplib.SbpOperators.BoundaryOperator 7 import Sbplib.SbpOperators.BoundaryOperator
9 8
10 @testset "normal_derivative" begin 9 @testset "normal_derivative" begin
11 g_1D = EquidistantGrid(11, 0.0, 1.0) 10 g_1D = EquidistantGrid(11, 0.0, 1.0)
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) 11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0))
13 @testset "normal_derivative" begin 12 @testset "normal_derivative" begin
14 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
15 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 14 d_closure = parse_stencil(stencil_set["d1"]["closure"])
16 @testset "1D" begin 15 @testset "1D" begin
17 d_l = normal_derivative(g_1D, d_closure, Lower()) 16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}())
18 @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) 17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}())
19 @test d_l isa BoundaryOperator{T,Lower} where T 18 @test d_l isa BoundaryOperator{T,Lower} where T
20 @test d_l isa TensorMapping{T,0,1} where T 19 @test d_l isa TensorMapping{T,0,1} where T
21 end 20 end
22 @testset "2D" begin 21 @testset "2D" begin
23 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 22 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
24 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) 23 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) 24 Ix = IdentityMapping{Float64}((size(g_2D)[1],))
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) 25 Iy = IdentityMapping{Float64}((size(g_2D)[2],))
27 d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) 26 d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}())
28 d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) 27 d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}())
28 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
29 @test d_w == d_l⊗Iy 29 @test d_w == d_l⊗Iy
30 @test d_n == Ix⊗d_r 30 @test d_n == Ix⊗d_r
31 @test d_w isa TensorMapping{T,1,2} where T 31 @test d_w isa TensorMapping{T,1,2} where T
32 @test d_n isa TensorMapping{T,1,2} where T 32 @test d_n isa TensorMapping{T,1,2} where T
33 end 33 end
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x)
39 # TODO: Test for higher order polynomials? 39 # TODO: Test for higher order polynomials?
40 @testset "2nd order" begin 40 @testset "2nd order" begin
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 42 d_closure = parse_stencil(stencil_set["d1"]["closure"])
43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D))
44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}())
45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
47 44
48 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
49 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
50 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
51 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
52 end 49 end
53 50
54 @testset "4th order" begin 51 @testset "4th order" begin
55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 52 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 53 d_closure = parse_stencil(stencil_set["d1"]["closure"])
57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D))
58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) 55
59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
61
62 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
63 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
64 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 58 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
65 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 59 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
66 end 60 end