comparison DiffOps/test/runtests.jl @ 259:5571d2c5bf0f boundary_conditions

Implement BaoundaryQuadrature for Laplace
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 28 Jun 2019 14:17:13 +0200
parents a827568fc251
children f1e90a92ad74
comparison
equal deleted inserted replaced
258:3ea8c60ccef3 259:5571d2c5bf0f
138 @test collect(d_w*g_y) ≈ G_w 138 @test collect(d_w*g_y) ≈ G_w
139 @test collect(d_e*g_y) ≈ G_e 139 @test collect(d_e*g_y) ≈ G_e
140 @test collect(d_s*g_x) ≈ G_s 140 @test collect(d_s*g_x) ≈ G_s
141 @test collect(d_n*g_x) ≈ G_n 141 @test collect(d_n*g_x) ≈ G_n
142 end 142 end
143
144 @testset "BoundaryQuadrature" begin
145 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
146 g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))
147
148 H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
149 H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
150 H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())
151 H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}())
152
153 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
154
155 function get_quadrature(N)
156 qc = op.quadratureClosure
157 q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...)
158 @assert length(q) == N
159 return q
160 end
161
162 v_w = v[1,:]
163 v_e = v[10,:]
164 v_s = v[:,1]
165 v_n = v[:,11]
166
167 q_x = spacing(g)[1].*get_quadrature(10)
168 q_y = spacing(g)[2].*get_quadrature(11)
169
170 @test H_w isa TensorOperator{T,1} where T
171
172 @test domain_size(H_w, (3,)) == (3,)
173 @test domain_size(H_n, (3,)) == (3,)
174
175 @test range_size(H_w, (3,)) == (3,)
176 @test range_size(H_n, (3,)) == (3,)
177
178 @test size(H_w*v_w) == (11,)
179 @test size(H_e*v_e) == (11,)
180 @test size(H_s*v_s) == (10,)
181 @test size(H_n*v_n) == (10,)
182
183 @test collect(H_w*v_w) ≈ q_y.*v_w
184 @test collect(H_e*v_e) ≈ q_y.*v_e
185 @test collect(H_s*v_s) ≈ q_x.*v_s
186 @test collect(H_n*v_n) ≈ q_x.*v_n
187 end