Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1283:54c3ed752730 refactor/grids
Make tests for normal_derivative work
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 01 Mar 2023 08:28:14 +0100 |
parents | 7fc8df5157a7 |
children | 43aaf710463e |
comparison
equal
deleted
inserted
replaced
1282:11b08b242e48 | 1283:54c3ed752730 |
---|---|
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 using Sbplib.RegionIndices | 6 using Sbplib.RegionIndices |
7 import Sbplib.SbpOperators.BoundaryOperator | 7 import Sbplib.SbpOperators.BoundaryOperator |
8 | 8 |
9 @testset "normal_derivative" begin | 9 @testset "normal_derivative" begin |
10 g_1D = EquidistantGrid(11, 0.0, 1.0) | 10 g_1D = equidistant_grid(11, 0.0, 1.0) |
11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | 11 g_2D = equidistant_grid((11,12), (0.0, 0.0), (1.0,1.0)) |
12 @testset "normal_derivative" begin | 12 @testset "normal_derivative" begin |
13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
14 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | |
15 @testset "1D" begin | 14 @testset "1D" begin |
16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) | 15 d_l = normal_derivative(g_1D, stencil_set, Lower()) |
17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) | 16 @test d_l == normal_derivative(g_1D, stencil_set, Lower()) |
18 @test d_l isa BoundaryOperator{T,Lower} where T | 17 @test d_l isa BoundaryOperator{T,Lower} where T |
19 @test d_l isa LazyTensor{T,0,1} where T | 18 @test d_l isa LazyTensor{T,0,1} where T |
20 end | 19 end |
21 @testset "2D" begin | 20 @testset "2D" begin |
22 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 21 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) |
23 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | 22 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}()) |
24 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) | 23 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) |
25 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) | 24 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) |
26 d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) | 25 d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower()) |
27 d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) | 26 d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper()) |
28 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) | 27 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) |
29 @test d_w == d_l⊗Iy | 28 @test d_w == d_l⊗Iy |
30 @test d_n == Ix⊗d_r | 29 @test d_n == Ix⊗d_r |
31 @test d_w isa LazyTensor{T,1,2} where T | 30 @test d_w isa LazyTensor{T,1,2} where T |
32 @test d_n isa LazyTensor{T,1,2} where T | 31 @test d_n isa LazyTensor{T,1,2} where T |
33 end | 32 end |
34 end | 33 end |
35 @testset "Accuracy" begin | 34 @testset "Accuracy" begin |
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | 35 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) |
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) | 36 v∂x = eval_on(g_2D, (x,y)-> 2*x + y) |
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | 37 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) |
39 # TODO: Test for higher order polynomials? | 38 # TODO: Test for higher order polynomials? |
40 @testset "2nd order" begin | 39 @testset "2nd order" begin |
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 40 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 41 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) |
43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | |
44 | 42 |
45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 43 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 44 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 45 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 46 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
49 end | 47 end |
50 | 48 |
51 @testset "4th order" begin | 49 @testset "4th order" begin |
52 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
53 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 51 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) |
54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | |
55 | 52 |
56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 53 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 54 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
58 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 55 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
59 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 56 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |