comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1283:54c3ed752730 refactor/grids

Make tests for normal_derivative work
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 01 Mar 2023 08:28:14 +0100
parents 7fc8df5157a7
children 43aaf710463e
comparison
equal deleted inserted replaced
1282:11b08b242e48 1283:54c3ed752730
5 using Sbplib.LazyTensors 5 using Sbplib.LazyTensors
6 using Sbplib.RegionIndices 6 using Sbplib.RegionIndices
7 import Sbplib.SbpOperators.BoundaryOperator 7 import Sbplib.SbpOperators.BoundaryOperator
8 8
9 @testset "normal_derivative" begin 9 @testset "normal_derivative" begin
10 g_1D = EquidistantGrid(11, 0.0, 1.0) 10 g_1D = equidistant_grid(11, 0.0, 1.0)
11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) 11 g_2D = equidistant_grid((11,12), (0.0, 0.0), (1.0,1.0))
12 @testset "normal_derivative" begin 12 @testset "normal_derivative" begin
13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
14 d_closure = parse_stencil(stencil_set["d1"]["closure"])
15 @testset "1D" begin 14 @testset "1D" begin
16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) 15 d_l = normal_derivative(g_1D, stencil_set, Lower())
17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) 16 @test d_l == normal_derivative(g_1D, stencil_set, Lower())
18 @test d_l isa BoundaryOperator{T,Lower} where T 17 @test d_l isa BoundaryOperator{T,Lower} where T
19 @test d_l isa LazyTensor{T,0,1} where T 18 @test d_l isa LazyTensor{T,0,1} where T
20 end 19 end
21 @testset "2D" begin 20 @testset "2D" begin
22 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 21 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
23 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) 22 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,Upper}())
24 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) 23 Ix = IdentityTensor{Float64}((size(g_2D)[1],))
25 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) 24 Iy = IdentityTensor{Float64}((size(g_2D)[2],))
26 d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) 25 d_l = normal_derivative(g_2D.grids[1], stencil_set, Lower())
27 d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) 26 d_r = normal_derivative(g_2D.grids[2], stencil_set, Upper())
28 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) 27 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}())
29 @test d_w == d_l⊗Iy 28 @test d_w == d_l⊗Iy
30 @test d_n == Ix⊗d_r 29 @test d_n == Ix⊗d_r
31 @test d_w isa LazyTensor{T,1,2} where T 30 @test d_w isa LazyTensor{T,1,2} where T
32 @test d_n isa LazyTensor{T,1,2} where T 31 @test d_n isa LazyTensor{T,1,2} where T
33 end 32 end
34 end 33 end
35 @testset "Accuracy" begin 34 @testset "Accuracy" begin
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) 35 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) 36 v∂x = eval_on(g_2D, (x,y)-> 2*x + y)
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) 37 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x)
39 # TODO: Test for higher order polynomials? 38 # TODO: Test for higher order polynomials?
40 @testset "2nd order" begin 39 @testset "2nd order" begin
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 40 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 41 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D))
44 42
45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 43 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 44 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 45 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 46 @test d_n*v ≈ v∂y[:,end] atol = 1e-13
49 end 47 end
50 48
51 @testset "4th order" begin 49 @testset "4th order" begin
52 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
53 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 51 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D))
54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D))
55 52
56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 53 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 54 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
58 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 55 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
59 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 56 @test d_n*v ≈ v∂y[:,end] atol = 1e-13