Mercurial > repos > public > sbplib_julia
comparison test/testSbpOperators.jl @ 592:4781e759d92f refactor/toml_operator_format
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 02 Dec 2020 14:20:24 +0100 |
parents | 8e4f86c4bf75 |
children | cc86b920531a e40e7439d1b4 |
comparison
equal
deleted
inserted
replaced
591:089d4cb65146 | 592:4781e759d92f |
---|---|
178 @test Qinv isa TensorMapping{T,2,2} where T | 178 @test Qinv isa TensorMapping{T,2,2} where T |
179 @test Qinv' isa TensorMapping{T,2,2} where T | 179 @test Qinv' isa TensorMapping{T,2,2} where T |
180 @test_broken Qinv*(Q*v) ≈ v | 180 @test_broken Qinv*(Q*v) ≈ v |
181 @test Qinv*v == Qinv'*v | 181 @test Qinv*v == Qinv'*v |
182 end | 182 end |
183 # | 183 |
184 # @testset "BoundaryValue" begin | 184 @testset "BoundaryRestrictrion" begin |
185 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 185 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
186 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | 186 g_1D = EquidistantGrid(11, 0.0, 1.0) |
187 # | 187 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) |
188 # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | 188 |
189 # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | 189 @testset "Constructors" begin |
190 # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | 190 @testset "1D" begin |
191 # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | 191 e_l = BoundaryRestriction{Lower}(op.eClosure,size(g_1D)[1]) |
192 # | 192 @test e_l == BoundaryRestriction(g_1D,op.eClosure,Lower()) |
193 # v = zeros(Float64, 4, 5) | 193 @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) |
194 # v[:,5] = [1, 2, 3,4] | 194 @test e_l isa TensorMapping{T,0,1} where T |
195 # v[:,4] = [1, 2, 3,4] | 195 |
196 # v[:,3] = [4, 5, 6, 7] | 196 e_r = BoundaryRestriction{Upper}(op.eClosure,size(g_1D)[1]) |
197 # v[:,2] = [7, 8, 9, 10] | 197 @test e_r == BoundaryRestriction(g_1D,op.eClosure,Upper()) |
198 # v[:,1] = [10, 11, 12, 13] | 198 @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) |
199 # | 199 @test e_r isa TensorMapping{T,0,1} where T |
200 # @test e_w isa TensorMapping{T,2,1} where T | 200 end |
201 # @test e_w' isa TensorMapping{T,1,2} where T | 201 |
202 # | 202 @testset "2D" begin |
203 # @test domain_size(e_w, (3,2)) == (2,) | 203 e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) |
204 # @test domain_size(e_e, (3,2)) == (2,) | 204 @test e_w isa InflatedTensorMapping |
205 # @test domain_size(e_s, (3,2)) == (3,) | 205 @test e_w isa TensorMapping{T,1,2} where T |
206 # @test domain_size(e_n, (3,2)) == (3,) | 206 end |
207 # | 207 end |
208 # @test size(e_w'*v) == (5,) | 208 |
209 # @test size(e_e'*v) == (5,) | 209 e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) |
210 # @test size(e_s'*v) == (4,) | 210 e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) |
211 # @test size(e_n'*v) == (4,) | 211 |
212 # | 212 e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) |
213 # @test e_w'*v == [10,7,4,1.0,1] | 213 e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) |
214 # @test e_e'*v == [13,10,7,4,4.0] | 214 e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) |
215 # @test e_s'*v == [10,11,12,13.0] | 215 e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) |
216 # @test e_n'*v == [1,2,3,4.0] | 216 |
217 # | 217 @testset "Sizes" begin |
218 # g_x = [1,2,3,4.0] | 218 @testset "1D" begin |
219 # g_y = [5,4,3,2,1.0] | 219 @test domain_size(e_l) == (11,) |
220 # | 220 @test domain_size(e_r) == (11,) |
221 # G_w = zeros(Float64, (4,5)) | 221 |
222 # G_w[1,:] = g_y | 222 @test range_size(e_l) == () |
223 # | 223 @test range_size(e_r) == () |
224 # G_e = zeros(Float64, (4,5)) | 224 end |
225 # G_e[4,:] = g_y | 225 |
226 # | 226 @testset "2D" begin |
227 # G_s = zeros(Float64, (4,5)) | 227 @test domain_size(e_w) == (11,15) |
228 # G_s[:,1] = g_x | 228 @test domain_size(e_e) == (11,15) |
229 # | 229 @test domain_size(e_s) == (11,15) |
230 # G_n = zeros(Float64, (4,5)) | 230 @test domain_size(e_n) == (11,15) |
231 # G_n[:,5] = g_x | 231 |
232 # | 232 @test range_size(e_w) == (15,) |
233 # @test size(e_w*g_y) == (UnknownDim,5) | 233 @test range_size(e_e) == (15,) |
234 # @test size(e_e*g_y) == (UnknownDim,5) | 234 @test range_size(e_s) == (11,) |
235 # @test size(e_s*g_x) == (4,UnknownDim) | 235 @test range_size(e_n) == (11,) |
236 # @test size(e_n*g_x) == (4,UnknownDim) | 236 end |
237 # | 237 end |
238 # # These tests should be moved to where they are possible (i.e we know what the grid should be) | 238 |
239 # @test_broken e_w*g_y == G_w | 239 |
240 # @test_broken e_e*g_y == G_e | 240 @testset "Application" begin |
241 # @test_broken e_s*g_x == G_s | 241 @testset "1D" begin |
242 # @test_broken e_n*g_x == G_n | 242 v = evalOn(g_1D,x->1+x^2) |
243 # end | 243 u = fill(3.124) |
244 @test (e_l*v)[] == v[1] | |
245 @test (e_r*v)[] == v[end] | |
246 @test (e_r*v)[1] == v[end] | |
247 @test e_l'*u == [u[]; zeros(10)] | |
248 @test e_r'*u == [zeros(10); u[]] | |
249 end | |
250 | |
251 @testset "2D" begin | |
252 v = rand(11, 15) | |
253 u = fill(3.124) | |
254 | |
255 @test e_w*v == v[1,:] | |
256 @test e_e*v == v[end,:] | |
257 @test e_s*v == v[:,1] | |
258 @test e_n*v == v[:,end] | |
259 | |
260 | |
261 g_x = rand(11) | |
262 g_y = rand(15) | |
263 | |
264 G_w = zeros(Float64, (11,15)) | |
265 G_w[1,:] = g_y | |
266 | |
267 G_e = zeros(Float64, (11,15)) | |
268 G_e[end,:] = g_y | |
269 | |
270 G_s = zeros(Float64, (11,15)) | |
271 G_s[:,1] = g_x | |
272 | |
273 G_n = zeros(Float64, (11,15)) | |
274 G_n[:,end] = g_x | |
275 | |
276 @test e_w'*g_y == G_w | |
277 @test e_e'*g_y == G_e | |
278 @test e_s'*g_x == G_s | |
279 @test e_n'*g_x == G_n | |
280 end | |
281 | |
282 @testset "Regions" begin | |
283 u = fill(3.124) | |
284 @test (e_l'*u)[Index(1,Lower)] == 3.124 | |
285 @test (e_l'*u)[Index(2,Lower)] == 0 | |
286 @test (e_l'*u)[Index(6,Interior)] == 0 | |
287 @test (e_l'*u)[Index(10,Upper)] == 0 | |
288 @test (e_l'*u)[Index(11,Upper)] == 0 | |
289 | |
290 @test (e_r'*u)[Index(1,Lower)] == 0 | |
291 @test (e_r'*u)[Index(2,Lower)] == 0 | |
292 @test (e_r'*u)[Index(6,Interior)] == 0 | |
293 @test (e_r'*u)[Index(10,Upper)] == 0 | |
294 @test (e_r'*u)[Index(11,Upper)] == 3.124 | |
295 end | |
296 end | |
297 | |
298 @testset "Inferred" begin | |
299 v = ones(Float64, 11) | |
300 u = fill(1.) | |
301 | |
302 @inferred apply(e_l, v) | |
303 @inferred apply(e_r, v) | |
304 | |
305 @inferred apply_transpose(e_l, u, 4) | |
306 @inferred apply_transpose(e_l, u, Index(1,Lower)) | |
307 @inferred apply_transpose(e_l, u, Index(2,Lower)) | |
308 @inferred apply_transpose(e_l, u, Index(6,Interior)) | |
309 @inferred apply_transpose(e_l, u, Index(10,Upper)) | |
310 @inferred apply_transpose(e_l, u, Index(11,Upper)) | |
311 | |
312 @inferred apply_transpose(e_r, u, 4) | |
313 @inferred apply_transpose(e_r, u, Index(1,Lower)) | |
314 @inferred apply_transpose(e_r, u, Index(2,Lower)) | |
315 @inferred apply_transpose(e_r, u, Index(6,Interior)) | |
316 @inferred apply_transpose(e_r, u, Index(10,Upper)) | |
317 @inferred apply_transpose(e_r, u, Index(11,Upper)) | |
318 end | |
319 | |
320 end | |
244 # | 321 # |
245 # @testset "NormalDerivative" begin | 322 # @testset "NormalDerivative" begin |
246 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 323 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
247 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | 324 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) |
248 # | 325 # |