comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 926:47425442bbc5 feature/laplace_opset

Fix tests after refactoring
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 21 Feb 2022 23:33:29 +0100
parents bea2feebbeca
children d360fc2d9620
comparison
equal deleted inserted replaced
925:6b47a9ee1632 926:47425442bbc5
1 using Test 1 using Test
2 2
3 using Sbplib.SbpOperators 3 using Sbplib.SbpOperators
4 using Sbplib.Grids 4 using Sbplib.Grids
5 using Sbplib.RegionIndices
6 using Sbplib.LazyTensors 5 using Sbplib.LazyTensors
7 6
8 import Sbplib.SbpOperators.BoundaryOperator 7 import Sbplib.SbpOperators.BoundaryOperator
9 8
10 @testset "normal_derivative" begin 9 @testset "normal_derivative" begin
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) 11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0))
13 @testset "normal_derivative" begin 12 @testset "normal_derivative" begin
14 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
15 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 14 d_closure = parse_stencil(stencil_set["d1"]["closure"])
16 @testset "1D" begin 15 @testset "1D" begin
17 d_l = normal_derivative(g_1D, d_closure, Lower()) 16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}())
18 @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}())
19 @test d_l isa BoundaryOperator{T,Lower} where T 17 @test d_l isa BoundaryOperator{T,Lower} where T
20 @test d_l isa TensorMapping{T,0,1} where T 18 @test d_l isa TensorMapping{T,0,1} where T
21 end 19 end
22 @testset "2D" begin 20 @testset "2D" begin
23 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 21 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
24 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) 22 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) 23 Ix = IdentityMapping{Float64}((size(g_2D)[1],))
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) 24 Iy = IdentityMapping{Float64}((size(g_2D)[2],))
27 d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) 25 d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}())
28 d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) 26 d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}())
29 @test d_w == d_l⊗Iy 27 @test d_w == d_l⊗Iy
30 @test d_n == Ix⊗d_r 28 @test d_n == Ix⊗d_r
31 @test d_w isa TensorMapping{T,1,2} where T 29 @test d_w isa TensorMapping{T,1,2} where T
32 @test d_n isa TensorMapping{T,1,2} where T 30 @test d_n isa TensorMapping{T,1,2} where T
33 end 31 end
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) 36 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x)
39 # TODO: Test for higher order polynomials? 37 # TODO: Test for higher order polynomials?
40 @testset "2nd order" begin 38 @testset "2nd order" begin
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 39 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 40 d_closure = parse_stencil(stencil_set["d1"]["closure"])
43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 41 (d_w, d_e, d_s, d_n) =
44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) 42 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D))
45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
47 43
48 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 44 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
49 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 45 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
50 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 46 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
51 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 47 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
52 end 48 end
53 49
54 @testset "4th order" begin 50 @testset "4th order" begin
55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 51 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 52 d_closure = parse_stencil(stencil_set["d1"]["closure"])
57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) 53 (d_w, d_e, d_s, d_n) =
58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) 54 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D))
59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
61 55
62 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 56 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
63 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 57 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
64 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 58 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
65 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 59 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13