Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 928:453fd1a2e858 feature/variable_derivatives
Merge bugfix/normal_derivative_sign
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 18 Feb 2022 08:03:37 +0100 |
parents | 35be8253de89 |
children | d360fc2d9620 |
comparison
equal
deleted
inserted
replaced
917:eb054537fc63 | 928:453fd1a2e858 |
---|---|
43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) |
44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) | 44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) |
45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) | 45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) |
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | 46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) |
47 | 47 |
48 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | 48 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
49 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | 49 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
50 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | 50 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
51 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | 51 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
52 end | 52 end |
53 | 53 |
54 @testset "4th order" begin | 54 @testset "4th order" begin |
55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) |
58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) | 58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) |
59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) | 59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) |
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | 60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) |
61 | 61 |
62 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | 62 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
63 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | 63 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
64 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | 64 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
65 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | 65 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
66 end | 66 end |
67 end | 67 end |
68 end | 68 end |